─ Python configuration ────────────────────────────────────────────────────────
- Python 3.12.7 (main, Oct 1 2024, 15:17:55) [GCC 11.4.0]
+ Python 3.12.3 (main, Sep 11 2024, 14:17:37) [GCC 13.2.0]
samplics 0.4.22
diff --git a/Clustering_Knowhow_files/figure-html/unnamed-chunk-10-1.png b/Clustering_Knowhow_files/figure-html/unnamed-chunk-10-1.png index 4d06723bb..f085b896a 100644 Binary files a/Clustering_Knowhow_files/figure-html/unnamed-chunk-10-1.png and b/Clustering_Knowhow_files/figure-html/unnamed-chunk-10-1.png differ diff --git a/Clustering_Knowhow_files/figure-html/unnamed-chunk-5-1.png b/Clustering_Knowhow_files/figure-html/unnamed-chunk-5-1.png index bfb607fcd..2958b7955 100644 Binary files a/Clustering_Knowhow_files/figure-html/unnamed-chunk-5-1.png and b/Clustering_Knowhow_files/figure-html/unnamed-chunk-5-1.png differ diff --git a/Clustering_Knowhow_files/figure-html/unnamed-chunk-6-1.png b/Clustering_Knowhow_files/figure-html/unnamed-chunk-6-1.png index 2a0d6dc04..4d1c629eb 100644 Binary files a/Clustering_Knowhow_files/figure-html/unnamed-chunk-6-1.png and b/Clustering_Knowhow_files/figure-html/unnamed-chunk-6-1.png differ diff --git a/Clustering_Knowhow_files/figure-html/unnamed-chunk-7-1.png b/Clustering_Knowhow_files/figure-html/unnamed-chunk-7-1.png index 84c2374c0..175d2cd9a 100644 Binary files a/Clustering_Knowhow_files/figure-html/unnamed-chunk-7-1.png and b/Clustering_Knowhow_files/figure-html/unnamed-chunk-7-1.png differ diff --git a/Clustering_Knowhow_files/figure-html/unnamed-chunk-8-1.png b/Clustering_Knowhow_files/figure-html/unnamed-chunk-8-1.png index 41933b67a..b8ee91ab8 100644 Binary files a/Clustering_Knowhow_files/figure-html/unnamed-chunk-8-1.png and b/Clustering_Knowhow_files/figure-html/unnamed-chunk-8-1.png differ diff --git a/Comp/r-sas-python_survey-stats-summary.html b/Comp/r-sas-python_survey-stats-summary.html index cbd9db683..f73230351 100644 --- a/Comp/r-sas-python_survey-stats-summary.html +++ b/Comp/r-sas-python_survey-stats-summary.html @@ -760,23 +760,23 @@
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
! package * version date (UTC) lib source
P survey * 4.4-2 2024-03-20 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
@@ -1683,7 +1683,7 @@ Summary and Recommendations
─ Python configuration ────────────────────────────────────────────────────────
- Python 3.12.7 (main, Oct 1 2024, 15:17:55) [GCC 11.4.0]
+ Python 3.12.3 (main, Sep 11 2024, 14:17:37) [GCC 13.2.0]
samplics 0.4.22
diff --git a/Comp/r-sas_cmh.html b/Comp/r-sas_cmh.html
index 378243aa4..b717fbdb5 100644
--- a/Comp/r-sas_cmh.html
+++ b/Comp/r-sas_cmh.html
@@ -349,23 +349,23 @@ CMH Statistics
As it can be seen, there are two schemata where R does not provide any results:
-
-
diff --git a/Comp/r-sas_friedman.html b/Comp/r-sas_friedman.html
index 10066d945..5177b7adb 100644
--- a/Comp/r-sas_friedman.html
+++ b/Comp/r-sas_friedman.html
@@ -352,21 +352,21 @@ References
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
! package * version date (UTC) lib source
P rstatix * 0.7.2 2023-02-01 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
diff --git a/Comp/r-sas_friedman_files/figure-html/unnamed-chunk-2-1.png b/Comp/r-sas_friedman_files/figure-html/unnamed-chunk-2-1.png
index 38f179706..183c619c2 100644
Binary files a/Comp/r-sas_friedman_files/figure-html/unnamed-chunk-2-1.png and b/Comp/r-sas_friedman_files/figure-html/unnamed-chunk-2-1.png differ
diff --git a/Comp/r-sas_survival_cif.html b/Comp/r-sas_survival_cif.html
index 79ef795b0..59c128691 100644
--- a/Comp/r-sas_survival_cif.html
+++ b/Comp/r-sas_survival_cif.html
@@ -276,14 +276,14 @@ Comparison of R and SAS
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
@@ -292,7 +292,7 @@ Comparison of R and SAS
survival 3.7-0 2024-06-05 [1] RSPM (R 4.4.0)
tidycmprsk 1.1.0 2024-08-17 [1] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
─ External software ──────────────────────────────────────────────────────────
diff --git a/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-3-1.png b/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-3-1.png
index fdfb6c658..1d52c0ad0 100644
Binary files a/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-3-1.png and b/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-6-1.png b/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-6-1.png
index 55ab7cc00..eabb5fd3d 100644
Binary files a/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-6-1.png and b/R/Accelerated_Failure_time_model_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/R/PCA_analysis.html b/R/PCA_analysis.html
index 162bb582e..ad9b67831 100644
--- a/R/PCA_analysis.html
+++ b/R/PCA_analysis.html
@@ -387,8 +387,8 @@ Vi
scene = list(bgcolor = "lightgray"))
fig
-
-
+
+
diff --git a/R/PCA_analysis_files/figure-html/unnamed-chunk-3-1.png b/R/PCA_analysis_files/figure-html/unnamed-chunk-3-1.png
index 0dd9943f8..19dd1c5c1 100644
Binary files a/R/PCA_analysis_files/figure-html/unnamed-chunk-3-1.png and b/R/PCA_analysis_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/R/PCA_analysis_files/figure-html/unnamed-chunk-4-1.png b/R/PCA_analysis_files/figure-html/unnamed-chunk-4-1.png
index 58e10dc46..0b9bde753 100644
Binary files a/R/PCA_analysis_files/figure-html/unnamed-chunk-4-1.png and b/R/PCA_analysis_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/R/Weighted-log-rank.html b/R/Weighted-log-rank.html
index 107ad5561..01ba54c63 100644
--- a/R/Weighted-log-rank.html
+++ b/R/Weighted-log-rank.html
@@ -386,14 +386,14 @@ References
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
@@ -401,7 +401,7 @@ References
P nphRCT * 0.1.1 2024-06-27 [?] RSPM (R 4.4.0)
P survival * 3.7-0 2024-06-05 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
diff --git a/R/ancova.html b/R/ancova.html
index 0f1eb964b..4169513db 100644
--- a/R/ancova.html
+++ b/R/ancova.html
@@ -273,23 +273,23 @@ The Model
<- model_ancova %>% tidy()
model_tidy %>% gt() model_glance
-
-
@@ -762,23 +762,23 @@ The Model
%>% gt() model_tidy
-
-
@@ -1265,23 +1265,23 @@ The Model
add_row(term = "Total", df = sum(.$df), sumsq = sum(.$sumsq))
%>% gt() model_table
-
-
@@ -1773,23 +1773,23 @@ Type 1
get_anova_table() %>%
gt()
-
-
@@ -2275,23 +2275,23 @@ Type 2
get_anova_table() %>%
gt()
-
-
@@ -2777,23 +2777,23 @@ Type 3
get_anova_table() %>%
gt()
-
-
diff --git a/R/ancova_files/figure-html/unnamed-chunk-7-1.png b/R/ancova_files/figure-html/unnamed-chunk-7-1.png
index 9cde2d3fa..2da726adb 100644
Binary files a/R/ancova_files/figure-html/unnamed-chunk-7-1.png and b/R/ancova_files/figure-html/unnamed-chunk-7-1.png differ
diff --git a/R/cmh.html b/R/cmh.html
index dffb3b445..72d22db16 100644
--- a/R/cmh.html
+++ b/R/cmh.html
@@ -241,23 +241,23 @@ Available R packages<
We did not find any R package that delivers all the same measures as SAS at once. Therefore, we tried out multiple packages:
-
-
diff --git a/R/count_data_regression_files/figure-html/unnamed-chunk-3-1.png b/R/count_data_regression_files/figure-html/unnamed-chunk-3-1.png
index ec2d572b6..fcaeefe03 100644
Binary files a/R/count_data_regression_files/figure-html/unnamed-chunk-3-1.png and b/R/count_data_regression_files/figure-html/unnamed-chunk-3-1.png differ
diff --git a/R/gsd-tte.html b/R/gsd-tte.html
index d7612fc5c..aa949f5ed 100644
--- a/R/gsd-tte.html
+++ b/R/gsd-tte.html
@@ -439,23 +439,23 @@ Example using gsDe
summary() |>
as_gt()
-
-
@@ -1008,23 +1008,23 @@ Example using gsDe
summary() |>
as_gt()
-
-
diff --git a/R/mi_mar_predictive_mean_match.html b/R/mi_mar_predictive_mean_match.html
index 2be0face2..97649be50 100644
--- a/R/mi_mar_predictive_mean_match.html
+++ b/R/mi_mar_predictive_mean_match.html
@@ -363,15 +363,15 @@ Impute with PMM
$imp$bmi imp_pmm
1 2 3 4 5
-1 29.6 22.0 33.2 33.2 30.1
-3 30.1 22.0 28.7 35.3 29.6
-4 26.3 22.5 21.7 22.5 24.9
-6 22.7 24.9 24.9 20.4 24.9
-10 28.7 27.5 30.1 22.5 29.6
-11 27.2 22.0 30.1 22.0 29.6
-12 33.2 29.6 29.6 20.4 29.6
-16 33.2 27.2 27.4 30.1 27.4
-21 27.2 30.1 27.4 30.1 27.2
+1 27.2 30.1 27.2 35.3 27.4
+3 30.1 33.2 22.0 27.2 35.3
+4 22.0 20.4 25.5 22.5 21.7
+6 22.7 22.7 24.9 22.5 20.4
+10 27.4 22.0 28.7 22.7 22.5
+11 22.0 35.3 30.1 30.1 20.4
+12 27.4 28.7 27.2 28.7 22.7
+16 28.7 33.2 20.4 35.3 20.4
+21 26.3 33.2 22.0 27.2 20.4
An alternative to the standard PMM is midastouch
.
@@ -448,15 +448,15 @@ Impute with PMM
$imp$bmi imp_pmms
1 2 3 4 5
-1 29.6 20.4 30.1 30.1 20.4
-3 29.6 22.0 30.1 30.1 29.6
-4 24.9 21.7 27.2 21.7 21.7
-6 24.9 21.7 27.2 21.7 21.7
-10 26.3 27.4 30.1 27.4 20.4
-11 29.6 20.4 33.2 33.2 29.6
-12 26.3 21.7 26.3 26.3 20.4
-16 27.4 33.2 30.1 33.2 29.6
-21 29.6 20.4 33.2 30.1 35.3
+1 22.5 30.1 30.1 22.0 29.6
+3 30.1 30.1 30.1 22.0 29.6
+4 25.5 25.5 30.1 24.9 27.4
+6 25.5 21.7 28.7 33.2 27.4
+10 21.7 29.6 22.7 22.7 26.3
+11 28.7 29.6 30.1 33.2 29.6
+12 21.7 29.6 22.7 20.4 22.7
+16 27.2 30.1 35.3 33.2 30.1
+21 27.2 29.6 30.1 33.2 29.6
diff --git a/R/mi_mar_regression_files/figure-html/missing-pattern-1.png b/R/mi_mar_regression_files/figure-html/missing-pattern-1.png
index 90e7c7a2e..2f1820bd4 100644
Binary files a/R/mi_mar_regression_files/figure-html/missing-pattern-1.png and b/R/mi_mar_regression_files/figure-html/missing-pattern-1.png differ
diff --git a/R/nonpara_wilcoxon_ranksum_files/figure-html/unnamed-chunk-4-1.png b/R/nonpara_wilcoxon_ranksum_files/figure-html/unnamed-chunk-4-1.png
index 16ff1d7f1..a8426cb45 100644
Binary files a/R/nonpara_wilcoxon_ranksum_files/figure-html/unnamed-chunk-4-1.png and b/R/nonpara_wilcoxon_ranksum_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/R/survey-stats-summary.html b/R/survey-stats-summary.html
index 8de70288a..7aaca36da 100644
--- a/R/survey-stats-summary.html
+++ b/R/survey-stats-summary.html
@@ -269,23 +269,23 @@ Simple Survey Designs
head(apisrs) |> gt::gt()
-
-
@@ -1138,23 +1138,23 @@ Summary Statistics on Complex Survey Designs
head(nhanes) |> gt::gt()
-
-
@@ -1724,21 +1724,21 @@ Summary Statistics on Complex Survey Designs
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
! package * version date (UTC) lib source
P survey * 4.4-2 2024-03-20 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
diff --git a/R/survival_cif.html b/R/survival_cif.html
index 1a89c40ad..bee7f6ac9 100644
--- a/R/survival_cif.html
+++ b/R/survival_cif.html
@@ -502,14 +502,14 @@ Summary
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
@@ -518,7 +518,7 @@ Summary
P survival * 3.7-0 2024-06-05 [?] RSPM (R 4.4.0)
P tidycmprsk * 1.1.0 2024-08-17 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
diff --git a/R/survival_cif_files/figure-html/cr.plot-1.png b/R/survival_cif_files/figure-html/cr.plot-1.png
index 21e9fed1d..507b96213 100644
Binary files a/R/survival_cif_files/figure-html/cr.plot-1.png and b/R/survival_cif_files/figure-html/cr.plot-1.png differ
diff --git a/R/survival_cif_files/figure-html/cr.plot-2.png b/R/survival_cif_files/figure-html/cr.plot-2.png
index 40bf81060..fa4f105ed 100644
Binary files a/R/survival_cif_files/figure-html/cr.plot-2.png and b/R/survival_cif_files/figure-html/cr.plot-2.png differ
diff --git a/R/xgboost.html b/R/xgboost.html
index 74e097b09..0429bff91 100644
--- a/R/xgboost.html
+++ b/R/xgboost.html
@@ -289,7 +289,7 @@ Data used
✖ MASS::select() masks dplyr::select()
✖ yardstick::spec() masks readr::spec()
✖ recipes::step() masks stats::step()
-• Use tidymodels_prefer() to resolve common conflicts.
+• Dig deeper into tidy modeling with R at https://www.tmwr.org
library(xgboost)
@@ -391,9 +391,9 @@ Classification
3 Not Low 0.985 0.0151
4 Not Low 0.985 0.0151
5 Not Low 0.985 0.0151
- 6 Not Low 0.988 0.0116
- 7 Not Low 0.988 0.0116
- 8 Not Low 0.988 0.0116
+ 6 Not Low 0.985 0.0151
+ 7 Not Low 0.985 0.0151
+ 8 Not Low 0.985 0.0151
9 Not Low 0.988 0.0116
10 Not Low 0.988 0.0116
# ℹ 38 more rows
@@ -492,14 +492,14 @@ Reference
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
@@ -591,7 +591,7 @@ Reference
P yaml 2.3.10 2024-07-26 [?] RSPM (R 4.4.0)
P yardstick * 1.3.1 2024-03-21 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
diff --git a/SAS/linear-regression.html b/SAS/linear-regression.html
index ad68218fe..9c5479a51 100644
--- a/SAS/linear-regression.html
+++ b/SAS/linear-regression.html
@@ -217,7 +217,7 @@ Linear Regression
diff --git a/SAS/logistic-regr.html b/SAS/logistic-regr.html
index 308120cf0..6fb3cea0c 100644
--- a/SAS/logistic-regr.html
+++ b/SAS/logistic-regr.html
@@ -219,7 +219,7 @@
Logistic Regression in SAS
diff --git a/SAS/survey-stats-summary.html b/SAS/survey-stats-summary.html
index cf3fef4f6..fcee7ba41 100644
--- a/SAS/survey-stats-summary.html
+++ b/SAS/survey-stats-summary.html
@@ -264,23 +264,23 @@
Simple Survey Designs
We will use the API dataset (“API Data Files” 2006), which contains a number of datasets based on different samples from a dataset of academic performance. Initially we will just cover the methodology with a simple random sample and a finite population correction to demonstrate functionality.
-
-
@@ -1145,23 +1145,23 @@ Summary Statistics on Complex Survey Designs
Much of the previous examples and notes still stand for more complex survey designs, here we will demonstrate using a dataset from NHANES (“National Health and Nutrition Examination Survey Data” 2010), which uses both stratification and clustering:
-
-
@@ -1757,21 +1757,21 @@ Summary Statistics on Complex Survey Designs
─ Session info ───────────────────────────────────────────────────────────────
setting value
version R version 4.4.0 (2024-04-24)
- os Ubuntu 22.04.5 LTS
+ os Ubuntu 24.04.1 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate C.UTF-8
ctype C.UTF-8
tz UTC
- date 2024-10-10
+ date 2024-10-15
pandoc 3.2 @ /opt/quarto/bin/tools/ (via rmarkdown)
─ Packages ───────────────────────────────────────────────────────────────────
! package * version date (UTC) lib source
P survey * 4.4-2 2024-03-20 [?] RSPM (R 4.4.0)
- [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-jammy/R-4.4/x86_64-pc-linux-gnu
+ [1] /home/runner/work/CAMIS/CAMIS/renv/library/linux-ubuntu-noble/R-4.4/x86_64-pc-linux-gnu
[2] /opt/R/4.4.0/lib/R/library
P ── Loaded and on-disk path mismatch.
diff --git a/blogs/index.html b/blogs/index.html
index caf5d3994..4ec18633f 100644
--- a/blogs/index.html
+++ b/blogs/index.html
@@ -244,7 +244,7 @@ Blogs
-
+
-
+
-
+
diff --git a/images/mmrm/review-convergence-rate-missingness-1.png b/images/mmrm/review-convergence-rate-missingness-1.png
index de8d37117..29c912f69 100644
Binary files a/images/mmrm/review-convergence-rate-missingness-1.png and b/images/mmrm/review-convergence-rate-missingness-1.png differ
diff --git a/images/mmrm/review-treatment-bcva-1.png b/images/mmrm/review-treatment-bcva-1.png
index 7ef94d4fc..e3e3b1b79 100644
Binary files a/images/mmrm/review-treatment-bcva-1.png and b/images/mmrm/review-treatment-bcva-1.png differ
diff --git a/images/mmrm/review-treatment-bcva-2.png b/images/mmrm/review-treatment-bcva-2.png
index d6c1e0bc8..2a742cf4c 100644
Binary files a/images/mmrm/review-treatment-bcva-2.png and b/images/mmrm/review-treatment-bcva-2.png differ
diff --git a/images/mmrm/review-treatment-fev-1.png b/images/mmrm/review-treatment-fev-1.png
index 181d721d2..9836b2176 100644
Binary files a/images/mmrm/review-treatment-fev-1.png and b/images/mmrm/review-treatment-fev-1.png differ
diff --git a/index.html b/index.html
index e241a6230..18e5a9019 100644
--- a/index.html
+++ b/index.html
@@ -204,23 +204,23 @@ Repository
The repository below provides examples of statistical methodology in different software and languages, along with a comparison of the results obtained and description of any discrepancies.
-
-
diff --git a/minutes/index.html b/minutes/index.html
index a8c12d2d3..411db4ca1 100644
--- a/minutes/index.html
+++ b/minutes/index.html
@@ -248,7 +248,7 @@ Meeting Minutes
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
diff --git a/minutes/posts/10June2024.html b/minutes/posts/10June2024.html
index 45e40d31a..7a9a833d7 100644
--- a/minutes/posts/10June2024.html
+++ b/minutes/posts/10June2024.html
@@ -389,6 +389,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/11Mar2024.html b/minutes/posts/11Mar2024.html
index 95e353c96..87dbfa29b 100644
--- a/minutes/posts/11Mar2024.html
+++ b/minutes/posts/11Mar2024.html
@@ -382,6 +382,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/12Aug2024.html b/minutes/posts/12Aug2024.html
index 15a83fb02..6fa103ba1 100644
--- a/minutes/posts/12Aug2024.html
+++ b/minutes/posts/12Aug2024.html
@@ -386,6 +386,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/12Feb2024.html b/minutes/posts/12Feb2024.html
index 5d09b8e17..84ded4d75 100644
--- a/minutes/posts/12Feb2024.html
+++ b/minutes/posts/12Feb2024.html
@@ -382,6 +382,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/13May2024.html b/minutes/posts/13May2024.html
index 5d6b05761..e68bb8afd 100644
--- a/minutes/posts/13May2024.html
+++ b/minutes/posts/13May2024.html
@@ -389,6 +389,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/15July2024.html b/minutes/posts/15July2024.html
index 240628af1..d0ac0353c 100644
--- a/minutes/posts/15July2024.html
+++ b/minutes/posts/15July2024.html
@@ -382,6 +382,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/8Apr2024.html b/minutes/posts/8Apr2024.html
index eb0475583..4479a083b 100644
--- a/minutes/posts/8Apr2024.html
+++ b/minutes/posts/8Apr2024.html
@@ -389,6 +389,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/8Jan2024.html b/minutes/posts/8Jan2024.html
index e7c3afbc0..20cd83290 100644
--- a/minutes/posts/8Jan2024.html
+++ b/minutes/posts/8Jan2024.html
@@ -382,6 +382,10 @@ Attendees
Prem Kant Shekhar
No
+
+Sunil
+No
+
diff --git a/minutes/posts/9sept2024.html b/minutes/posts/9sept2024.html
index a624a670b..0bd0b2ec5 100644
--- a/minutes/posts/9sept2024.html
+++ b/minutes/posts/9sept2024.html
@@ -389,6 +389,10 @@ Attendees
Prem Kant Shekhar
Yes
+
+Sunil
+No
+
diff --git a/python/MANOVA.html b/python/MANOVA.html
index 727c5ac6d..d1ba15468 100644
--- a/python/MANOVA.html
+++ b/python/MANOVA.html
@@ -229,7 +229,7 @@ MANOVA in Python
Example 39.6 Multivariate Analysis of Variance from SAS MANOVA User Guide
This example employs multivariate analysis of variance (MANOVA) to measure differences in the chemical characteristics of ancient pottery found at four kiln sites in Great Britain. The data are from Tubb, Parker, and Nickless (1980), as reported in Hand et al. (1994).
For each of 26 samples of pottery, the percentages of oxides of five metals are measured. The following statements create the data set and invoke the GLM procedure to perform a one-way MANOVA. Additionally, it is of interest to know whether the pottery from one site in Wales (Llanederyn) differs from the samples from other sites; a CONTRAST statement is used to test this hypothesis.
-
+
import pandas as pd
from statsmodels.multivariate.manova import MANOVA
diff --git a/python/Rounding.html b/python/Rounding.html
index 25dd489a0..ec79ce336 100644
--- a/python/Rounding.html
+++ b/python/Rounding.html
@@ -218,7 +218,7 @@ Rounding in Python
Python has a built-in round() function that takes two numeric arguments, number and ndigits, and returns a floating point number that is a rounded version of the number up to the specified number of decimals.
The default number of decimal is 0, meaning that the function will return the nearest integer.
-
+
# For integers
= 12
xprint(round(x))
diff --git a/python/Summary_statistics.html b/python/Summary_statistics.html
index 10901ce95..b21b9d803 100644
--- a/python/Summary_statistics.html
+++ b/python/Summary_statistics.html
@@ -223,7 +223,7 @@ Summary statistics
4.out (optional): An alternate output array where we can place the result.
5.overwrite_input (optional): Used to modify the input array.
6.keepdims (optional): Creates reduced axes with dimensions of one size.
-
+
import numpy as np
=[12, 25, 16, 50, 34, 29, 60, 86, 52, 39, 41]
diff --git a/python/ancova.html b/python/ancova.html
index 8598a9ac3..29727bbbb 100644
--- a/python/ancova.html
+++ b/python/ancova.html
@@ -233,7 +233,7 @@ sample_dataIntroduction
Data Summary
-
+
import pandas as pd
# Input data
@@ -251,7 +251,7 @@ Data Summary
= pd.DataFrame(data) df
-
+
# Descriptive statistics
= df.describe()
summary_stats
@@ -280,7 +280,7 @@ Data Summary
Ancova in Python
In Python, Ancova can be performed using the statsmodels library from the scipy package.
-
+
import statsmodels.api as sm
import statsmodels.formula.api as smf
from tabulate import tabulate
@@ -313,8 +313,8 @@ Ancova in Python
Dep. Variable: post R-squared: 0.676
Model: OLS Adj. R-squared: 0.639
Method: Least Squares F-statistic: 18.10
-Date: Thu, 10 Oct 2024 Prob (F-statistic): 1.50e-06
-Time: 16:53:10 Log-Likelihood: -82.054
+Date: Tue, 15 Oct 2024 Prob (F-statistic): 1.50e-06
+Time: 16:24:24 Log-Likelihood: -82.054
No. Observations: 30 AIC: 172.1
Df Residuals: 26 BIC: 177.7
Df Model: 3
@@ -355,7 +355,7 @@ Ancova in Python
Please note that all values match with the corresponding R version, except for the AIC and BIC values, which differ slightly. This should be acceptable for most practical purposes in statistical analysis. Currently, there are ongoing discussions in the statsmodels community regarding the computational details of AIC and BIC.
The following code can be used to enforce complete consistency of AIC and BIC values with R outputs by adding 1 to the number of parameters:
-
+
import numpy as np
# Manual calculation of AIC and BIC to ensure consistency with R
@@ -384,7 +384,7 @@ Ancova in Python
There are different types of anova computations. The statsmodels.stats.anova.anova_lm function allows the types 1, 2 and 3. The code to compute these types is depicted below:
-
+
import statsmodels.formula.api as smf
import statsmodels.stats.anova as ssa
@@ -456,7 +456,7 @@ Ancova in Python
Type 1 Ancova in Python
-
+
print(tabulate(ancova_table_type_1, headers='keys', tablefmt='grid'))
+----+----------+-------+-------+---------+---------+----------+-------------+----------+----------+
@@ -471,7 +471,7 @@ Type 1 Ancova in P
Type 2 Ancova in Python
-
+
print(tabulate(ancova_table_type_2, headers='keys', tablefmt='grid'))
+----+----------+-------+-------+----------+---------+----------+-------------+----------+----------+
@@ -486,7 +486,7 @@ Type 2 Ancova in P
Type 3 Ancova in Python
-
+
print(tabulate(ancova_table_type_3, headers='keys', tablefmt='grid'))
+----+-----------+-------+-------+----------+---------+----------+-------------+----------+----------+
diff --git a/python/anova.html b/python/anova.html
index a2c782f90..f45ef8030 100644
--- a/python/anova.html
+++ b/python/anova.html
@@ -234,7 +234,7 @@ Introduction
Anova Test in Python
To perform a one-way ANOVA test in Python we can use the f_oneway() function from SciPy library. Similarly, to perform two-way ANOVA test anova_lm() function from the statsmodel library is frequently used.
For this test, we’ll create a data frame called df_disease taken from the SAS documentation. The corresponding data can be found here. In this experiment, we are trying to find the impact of different drug and disease group on the stem-length
-
+
import pandas as pd
import statsmodels.api as sm
from statsmodels.formula.api import ols
diff --git a/python/binomial_test.html b/python/binomial_test.html
index 2deb4882a..688227d64 100644
--- a/python/binomial_test.html
+++ b/python/binomial_test.html
@@ -267,7 +267,7 @@ Creating a sampl
We will generate a dataset where we record the outcomes of 1000 coin flips.
We will use the binom.test
function to test if the proportion of heads is significantly different from 0.5.
-
+
import numpy as np
from scipy.stats import binomtest
@@ -276,7 +276,7 @@ Creating a sampl
= np.random.choice(['H', 'T'], size=1000, replace=True, p=[0.5, 0.5]) coin_flips
Now, we will count the heads and tails and summarize the data.
-
+
# Count heads and tails
= np.sum(coin_flips == 'H')
heads_count = np.sum(coin_flips == 'T')
@@ -290,7 +290,7 @@ tails_count Creating a sampl
Conducting Binomial Test
-
+
# Perform the binomial test
= binomtest(heads_count, total_flips, p=0.5)
binom_test_result binom_test_result
@@ -307,7 +307,7 @@ Results:
Example of Clinical Trial Data
We load the lung
dataset from survival
package. We want to test if the proportion of patients with survival status 1 (dead) is significantly different from a hypothesized proportion (e.g. 50%)
We will calculate number of deaths and total number of patients.
-
+
import pandas as pd
# Load the lung cancer dataset from CSV file
@@ -325,7 +325,7 @@ Example of Clinical Trial Data
Conduct the Binomial Test
We will conduct the Binomial test and hypothesize that the proportion of death should be 19%.
-
+
# Perform the binomial test
= binomtest(num_deaths, total_pat, p=0.19)
binom_test_clinical binom_test_clinical
diff --git a/python/chi-square.html b/python/chi-square.html
index 488d902d9..53ef7983c 100644
--- a/python/chi-square.html
+++ b/python/chi-square.html
@@ -240,7 +240,7 @@ Data used
Implementing Chi-Square test in Python
We can use crosstab() function to create contingency table of two selected variables.
-
+
import pandas as pd
import numpy as np
import scipy.stats as stats
@@ -274,13 +274,13 @@ Imp
Name: ecog_grp, Length: 213, dtype: object
-/tmp/ipykernel_7549/2909872460.py:13: SettingWithCopyWarning:
+/tmp/ipykernel_26195/2909872460.py:13: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
df['ecog_grp']= np.where(df['ph.ecog']>0, "fully active","symptomatic")
-/tmp/ipykernel_7549/2909872460.py:15: SettingWithCopyWarning:
+/tmp/ipykernel_26195/2909872460.py:15: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
@@ -322,7 +322,7 @@ Imp
Furthermore, the chi2_contingency() function in scipy.stats library in Python can be used to implement Chi-square test.
-
+
# Parsing the values from the contingency table
= np.array([contingency_table.iloc[0][0:5].values,
value 1][0:5].values])
@@ -345,7 +345,7 @@ contingency_table.iloc[Imp
Implementing Fisher exact test in Python
To implement Fischer’s exact test in Python, we can use the fischer_exact() function from the stats module in SciPy library. It returns SignificanceResult object with statistic and pvalue as it’s attributes.
-
+
="two-sided") stats.fisher_exact(value, alternative
SignificanceResult(statistic=np.float64(0.6118262268704746), pvalue=np.float64(0.13500579984749855))
diff --git a/python/correlation.html b/python/correlation.html
index c1203ab85..ca962fff4 100644
--- a/python/correlation.html
+++ b/python/correlation.html
@@ -229,7 +229,7 @@ Correlation Analysis in Python
Pearson’s Correlation
It is a parametric correlation test because it depends on the distribution of data. It measures the linear dependence between two variables x and y. It is the ratio between the covariance of two variables and the product of their standard deviation. The result always have a value between 1 and -1.
-
+
import pandas as pd
from scipy.stats import pearsonr
@@ -251,7 +251,7 @@ Pearson’s Correlati
Kendall’s Rank
A τ test is a non-parametric hypothesis test for statistical dependence based on the τ coefficient. It is a measure of rank correlation: the similarity of the orderings of the data when ranked by each of the quantities. The Kendall correlation between two variables will be high when observations have a similar (or identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd, etc.) between the two variables, and low when observations have a dissimilar (or fully different for a correlation of −1) rank between the two variables.
-
+
import pandas as pd
from scipy.stats import kendalltau
@@ -274,7 +274,7 @@ Kendall’s Rank
Spearman’s Rank
Spearman’s Rank Correlation is a statistical measure of the strength and direction of the monotonic relationship between two continuous variables. Therefore, these attributes are ranked or put in the order of their preference. It is denoted by the symbol “rho” (ρ) and can take values between -1 to +1. A positive value of rho indicates that there exists a positive relationship between the two variables, while a negative value of rho indicates a negative relationship. A rho value of 0 indicates no association between the two variables.
-
+
import pandas as pd
from scipy.stats import spearmanr
diff --git a/python/kruskal_wallis.html b/python/kruskal_wallis.html
index 61a7e4f18..a9374c0ba 100644
--- a/python/kruskal_wallis.html
+++ b/python/kruskal_wallis.html
@@ -227,7 +227,7 @@ Kruskal Wallis in Python
Introduction
The Kruskal-Wallis test is a non-parametric equivalent to the one-way ANOVA. For this example, the data used is a subset of the iris dataset, testing for difference in sepal width between species of flower.
-
+
import pandas as pd
# Define the data
@@ -267,7 +267,7 @@ Introduction
Implementing Kruskal-Wallis in Python
The Kruskal-Wallis test can be implemented in Python using the kruskal function from scipy.stats. The null hypothesis is that the samples are from identical populations.
-
+
from scipy.stats import kruskal
# Separate the data for each species
diff --git a/python/linear_regression.html b/python/linear_regression.html
index 8d004bea2..6edbade93 100644
--- a/python/linear_regression.html
+++ b/python/linear_regression.html
@@ -230,7 +230,7 @@ Linear Regression
Descriptive Statistics
The first step is to obtain the simple descriptive statistics for the numeric variables of htwt data, and one-way frequencies for categorical variables. This is accomplished by employing summary function. There are 237 participants who are from 13.9 to 25 years old. It is a cross-sectional study, with each participant having one observation. We can use this data set to examine the relationship of participants’ height to their age and sex.
-
+
import pandas as pd
import statsmodels.api as sm
@@ -238,7 +238,7 @@ Descriptive Statist
= pd.read_csv("../data/htwt.csv") htwt
In order to create a regression model to demonstrate the relationship between age and height for females, we first need to create a flag variable identifying females and an interaction variable between age and female gender flag.
-
+
'female'] = (htwt['SEX'] == 'f').astype(int)
htwt['fem_age'] = htwt['AGE'] * htwt['female']
htwt[ htwt.head()
@@ -320,7 +320,7 @@ Descriptive Statist
Regression Analysis
Next, we fit a regression model, representing the relationships between gender, age, height and the interaction variable created in the datastep above. We again use a where statement to restrict the analysis to those who are less than or equal to 19 years old. We use the clb option to get a 95% confidence interval for each of the parameters in the model. The model that we are fitting is height = b0 + b1 x female + b2 x age + b3 x fem_age + e
-
+
= htwt[['female', 'AGE', 'fem_age']][htwt['AGE'] <= 19]
X = sm.add_constant(X)
X = htwt['HEIGHT'][htwt['AGE'] <= 19]
@@ -352,13 +352,13 @@ Y Regression Analysis
Date:
-Thu, 10 Oct 2024
+Tue, 15 Oct 2024
Prob (F-statistic):
1.50e-28
Time:
-16:52:29
+16:24:11
Log-Likelihood:
-534.17
diff --git a/python/logistic_regression.html b/python/logistic_regression.html
index 2839e1c2a..1ecd1a0ed 100644
--- a/python/logistic_regression.html
+++ b/python/logistic_regression.html
@@ -268,7 +268,7 @@ Logistic Regression
Imports
-
+
#data manipulation
import pandas as pd
import numpy as np
@@ -290,7 +290,7 @@ Background
Example : Lung cancer data
Data source: Loprinzi CL. Laurie JA. Wieand HS. Krook JE. Novotny PJ. Kugler JW. Bartel J. Law M. Bateman M. Klatt NE. et al. Prospective evaluation of prognostic variables from patient-completed questionnaires. North Central Cancer Treatment Group. Journal of Clinical Oncology. 12(3):601-7, 1994.
These data were sourced from the R package {survival} and have been downloaded and stored in the data
folder.
-
+
# importing and prepare
= pd.read_csv("../data/lung_cancer.csv")
lung2
@@ -303,7 +303,7 @@ Example : Lung cancer data
Logistic Regression Modelling
Let’s further prepare our data for modelling by selecting the explanatory variables and the dependent variable. The Python packages that we are are aware of require complete (i.e. no missing values) data so for convenience of demonstrating these methods we will drop rows with missing values.
-
+
= ["age", "sex", "ph.ecog", "meal.cal"]
x_vars = "wt_grp"
y_var
@@ -317,7 +317,7 @@ Logistic Regression Modelling
Statsmodels package
We will use the sm.Logit()
method to fit our logistic regression model.
-
+
#intercept column
= sm.add_constant(x)
x_sm
@@ -333,8 +333,8 @@ Statsmodels packageStatsmodels package
Model fitting
In addition to the information contained in the summary, we can display the model coefficients as odds ratios:
-
+
print("Odds ratios for statsmodels logistic regression:")
print(np.exp(lr_sm.params))
@@ -365,7 +365,7 @@ Model fitting
We can also provide the 5% confidence intervals for the odds ratios:
-
+
print("CI at 5% for statsmodels logistic regression:")
print(np.exp(lr_sm.conf_int(alpha = 0.05)))
@@ -382,7 +382,7 @@ Model fitting
Prediction
Let’s use our trained model to make a weight loss prediction about a new patient.
-
+
# new female, symptomatic but completely ambulatory patient consuming 2500 calories
= pd.DataFrame({
new_pt "age": [56],
@@ -420,11 +420,11 @@ Scikit-learn Package<
It’s important to note that l2 regularisation is applied by default in the scikit-learn
implementation of logistic regression. More recent releases of this package include an option to have no regularisation penalty.
-
+
= LogisticRegression(penalty=None).fit(x, y) lr_sk
Unlike the statsmodels
approach scikit-learn
doesn’t have a summary method for the model but you can extract some of the model parameters as follows:
-
+
print("Intercept for scikit learn logistic regression:")
print(lr_sk.intercept_)
print("Odds ratios for scikit learn logistic regression:")
@@ -440,7 +440,7 @@ Scikit-learn Package<
Prediction
Using the same new patient example we can use our logistic regression model to make a prediction. The predict_proba
method is used to return the probability for each class. If you are interested in viewing the prediction for y = 1
, i.e. the probability of weight loss then you can select the second probability as shown:
-
+
print("Probability of weight loss using the scikit-learn package:")
print(lr_sk.predict_proba(new_pt)[:,1])
diff --git a/python/one_sample_t_test.html b/python/one_sample_t_test.html
index 307d715e9..388fe4fc3 100644
--- a/python/one_sample_t_test.html
+++ b/python/one_sample_t_test.html
@@ -234,7 +234,7 @@ One Sample t-t
Data Used
-
+
import pandas as pd
# Create sample data
@@ -249,7 +249,7 @@ Data Used
subsubtitle: “t-test”
The following code was used to test the comparison in Python. Note that the baseline null hypothesis goes in the “popmean” parameter.
-
+
import pandas as pd
from scipy import stats
diff --git a/python/paired_t_test.html b/python/paired_t_test.html
index 248acbfa4..f9d588157 100644
--- a/python/paired_t_test.html
+++ b/python/paired_t_test.html
@@ -236,7 +236,7 @@ Paired t-test in P
Data Used
-
+
import pandas as pd
# Create sample data
@@ -251,7 +251,7 @@ Data Used
Paired t-test
The following code was used to test the comparison in Python. Note that the baseline null hypothesis goes in the “popmean” parameter.
-
+