-
Notifications
You must be signed in to change notification settings - Fork 33
/
Copy pathshine_incre.py
247 lines (200 loc) · 10.7 KB
/
shine_incre.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import sys
import numpy as np
from numpy.linalg import inv, norm
from tqdm import tqdm
import open3d as o3d
import wandb
import torch
import torch.nn as nn
import torch.optim as optim
import shutil
from utils.config import SHINEConfig
from utils.tools import *
from utils.loss import *
from utils.incre_learning import cal_feature_importance
from utils.mesher import Mesher
from utils.visualizer import MapVisualizer, random_color_table
from model.feature_octree import FeatureOctree
from model.decoder import Decoder
from dataset.lidar_dataset import LiDARDataset
def run_shine_mapping_incremental():
config = SHINEConfig()
if len(sys.argv) > 1:
config.load(sys.argv[1])
else:
sys.exit(
"Please provide the path to the config file.\nTry: python shine_incre.py xxx/xxx_config.yaml"
)
run_path = setup_experiment(config)
shutil.copy2(sys.argv[1], run_path) # copy the config file to the result folder
dev = config.device
# initialize the feature octree
octree = FeatureOctree(config)
# initialize the mlp decoder
geo_mlp = Decoder(config, is_geo_encoder=True)
sem_mlp = Decoder(config, is_geo_encoder=False)
# Load the decoder model
if config.load_model:
loaded_model = torch.load(config.model_path)
geo_mlp.load_state_dict(loaded_model["geo_decoder"])
print("Pretrained decoder loaded")
freeze_model(geo_mlp) # fixed the decoder
if config.semantic_on:
sem_mlp.load_state_dict(loaded_model["sem_decoder"])
freeze_model(sem_mlp) # fixed the decoder
if 'feature_octree' in loaded_model.keys(): # also load the feature octree
octree = loaded_model["feature_octree"]
octree.print_detail()
# dataset
dataset = LiDARDataset(config, octree)
# mesh reconstructor
mesher = Mesher(config, octree, geo_mlp, sem_mlp)
mesher.global_transform = inv(dataset.begin_pose_inv)
# Non-blocking visualizer
if config.o3d_vis_on:
vis = MapVisualizer()
# learnable parameters
geo_mlp_param = list(geo_mlp.parameters())
sem_mlp_param = list(sem_mlp.parameters())
# learnable sigma for differentiable rendering
sigma_size = torch.nn.Parameter(torch.ones(1, device=dev)*1.0)
# fixed sigma for sdf prediction supervised with BCE loss
sigma_sigmoid = config.logistic_gaussian_ratio*config.sigma_sigmoid_m*config.scale
processed_frame = 0
total_iter = 0
if config.continual_learning_reg:
config.loss_reduction = "sum" # other-wise "mean"
if config.normal_loss_on or config.ekional_loss_on or config.proj_correction_on or config.consistency_loss_on:
require_gradient = True
else:
require_gradient = False
# for each frame
for frame_id in tqdm(range(dataset.total_pc_count)):
if (frame_id < config.begin_frame or frame_id > config.end_frame or \
frame_id % config.every_frame != 0):
continue
vis_mesh = False
if processed_frame == config.freeze_after_frame: # freeze the decoder after certain frame
print("Freeze the decoder")
freeze_model(geo_mlp) # fixed the decoder
if config.semantic_on:
freeze_model(sem_mlp) # fixed the decoder
T0 = get_time()
# preprocess, sample data and update the octree
# if continual_learning_reg is on, we only keep the current frame's sample in the data pool,
# otherwise we accumulate the data pool with the current frame's sample
local_data_only = False # this one would lead to the forgetting issue
dataset.process_frame(frame_id, incremental_on=config.continual_learning_reg or local_data_only)
octree_feat = list(octree.parameters())
opt = setup_optimizer(config, octree_feat, geo_mlp_param, sem_mlp_param, sigma_size)
octree.print_detail()
T1 = get_time()
for iter in tqdm(range(config.iters)):
# load batch data (avoid using dataloader because the data are already in gpu, memory vs speed)
# we do not use the ray rendering loss here for the incremental mapping
coord, sdf_label, _, _, _, sem_label, weight = dataset.get_batch()
if require_gradient:
coord.requires_grad_(True)
# interpolate and concat the hierachical grid features
feature = octree.query_feature(coord)
# predict the scaled sdf with the feature
sdf_pred = geo_mlp.sdf(feature)
if config.semantic_on:
sem_pred = sem_mlp.sem_label_prob(feature)
# calculate the loss
surface_mask = weight > 0
if require_gradient:
g = get_gradient(coord, sdf_pred)*sigma_sigmoid
if config.consistency_loss_on:
near_index = torch.randint(0, coord.shape[0], (min(config.consistency_count,coord.shape[0]),), device=dev)
shift_scale = config.consistency_range * config.scale # 10 cm
random_shift = torch.rand_like(coord) * 2 * shift_scale - shift_scale
coord_near = coord + random_shift
coord_near = coord_near[near_index, :] # only use a part of these coord to speed up
coord_near.requires_grad_(True)
feature_near = octree.query_feature(coord_near)
pred_near = geo_mlp.sdf(feature_near)
g_near = get_gradient(coord_near, pred_near)*sigma_sigmoid
cur_loss = 0.
weight = torch.abs(weight) # weight's sign indicate the sample is around the surface or in the free space
sdf_loss = sdf_bce_loss(sdf_pred, sdf_label, sigma_sigmoid, weight, config.loss_weight_on, config.loss_reduction)
cur_loss += sdf_loss
# incremental learning regularization loss
reg_loss = 0.
if config.continual_learning_reg:
reg_loss = octree.cal_regularization()
cur_loss += config.lambda_forget * reg_loss
# optional ekional loss
eikonal_loss = 0.
if config.ekional_loss_on: # MSE with regards to 1
# eikonal_loss = ((g.norm(2, dim=-1) - 1.0) ** 2).mean() # both the surface and the freespace
# eikonal_loss = ((g[~surface_mask].norm(2, dim=-1) - 1.0) ** 2).mean() # only the freespace
eikonal_loss = ((g[surface_mask].norm(2, dim=-1) - 1.0) ** 2).mean() # only close to the surface
cur_loss += config.weight_e * eikonal_loss
consistency_loss = 0.
if config.consistency_loss_on:
consistency_loss = (1.0 - F.cosine_similarity(g[near_index, :], g_near)).mean()
cur_loss += config.weight_c * consistency_loss
# semantic classification loss
sem_loss = 0.
if config.semantic_on:
loss_nll = nn.NLLLoss(reduction='mean')
sem_loss = loss_nll(sem_pred[::config.sem_label_decimation,:], sem_label[::config.sem_label_decimation])
cur_loss += config.weight_s * sem_loss
opt.zero_grad(set_to_none=True)
cur_loss.backward() # this is the slowest part (about 10x the forward time)
opt.step()
total_iter += 1
if config.wandb_vis_on:
wandb_log_content = {'iter': total_iter, 'loss/total_loss': cur_loss, 'loss/sdf_loss': sdf_loss, \
'loss/reg_loss':reg_loss, 'loss/eikonal_loss': eikonal_loss, 'loss/consistency_loss': consistency_loss, 'loss/sem_loss': sem_loss}
wandb.log(wandb_log_content)
# calculate the importance of each octree feature
if config.continual_learning_reg:
opt.zero_grad(set_to_none=True)
cal_feature_importance(dataset, octree, geo_mlp, sigma_sigmoid, config.bs, \
config.cal_importance_weight_down_rate, config.loss_reduction)
T2 = get_time()
# reconstruction by marching cubes
if processed_frame == 0 or (processed_frame+1) % config.mesh_freq_frame == 0:
print("Begin mesh reconstruction from the implicit map")
vis_mesh = True
# print("Begin reconstruction from implicit mapn")
mesh_path = run_path + '/mesh/mesh_frame_' + str(frame_id+1) + ".ply"
map_path = run_path + '/map/sdf_map_frame_' + str(frame_id+1) + ".ply"
if config.mc_with_octree: # default
cur_mesh = mesher.recon_octree_mesh(config.mc_query_level, config.mc_res_m, mesh_path, map_path, config.save_map, config.semantic_on)
else:
if config.mc_local: # only build the local mesh to speed up
cur_mesh = mesher.recon_bbx_mesh(dataset.cur_bbx, config.mc_res_m, mesh_path, map_path, config.save_map, config.semantic_on)
else:
cur_mesh = mesher.recon_bbx_mesh(dataset.map_bbx, config.mc_res_m, mesh_path, map_path, config.save_map, config.semantic_on)
T3 = get_time()
if config.o3d_vis_on:
if vis_mesh:
cur_mesh.transform(dataset.begin_pose_inv) # back to the globally shifted frame for vis
vis.update(dataset.cur_frame_pc, dataset.cur_pose_ref, cur_mesh)
else: # only show frame and current point cloud
vis.update(dataset.cur_frame_pc, dataset.cur_pose_ref)
# visualize the octree (it is a bit slow and memory intensive for the visualization)
# vis_octree = True
# if vis_octree:
# cur_mesh.transform(dataset.begin_pose_inv)
# vis_list = [] # create a list of bbx for the octree nodes
# for l in range(config.tree_level_feat):
# nodes_coord = octree.get_octree_nodes(config.tree_level_world-l)/config.scale
# box_size = np.ones(3) * config.leaf_vox_size * (2**l)
# for node_coord in nodes_coord:
# node_box = o3d.geometry.AxisAlignedBoundingBox(node_coord-0.5*box_size, node_coord+0.5*box_size)
# node_box.color = random_color_table[l]
# vis_list.append(node_box)
# vis_list.append(cur_mesh)
# o3d.visualization.draw_geometries(vis_list)
if config.wandb_vis_on:
wandb_log_content = {'frame': processed_frame, 'timing(s)/preprocess': T1-T0, 'timing(s)/mapping': T2-T1, 'timing(s)/reconstruct': T3-T2}
wandb.log(wandb_log_content)
processed_frame += 1
if config.o3d_vis_on:
vis.stop()
if __name__ == "__main__":
run_shine_mapping_incremental()