forked from pengsida/learning_nerf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_net_pl.py
230 lines (211 loc) · 8.31 KB
/
train_net_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import torch
import pytorch_lightning as pl
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning import seed_everything
from lib.config import cfg, args
from lib.utils.base_utils import load_object
from os.path import join
class plwrapper(pl.LightningModule):
def __init__(self, cfg, mode='train'):
super().__init__()
self.cfg = cfg
self.network = load_object(cfg.network_module, {})
if mode == 'train':
self.train_dataset = load_object(cfg.train_dataset_module, cfg.train_dataset)
self.network_wrapper = load_object(cfg.loss_module, {'net': self.network})
def forward(self, batch):
# in lightning, forward defines the prediction/inference actions
__import__('ipdb').set_trace()
self.network.train()
batch['step'] = self.trainer.global_step
batch['meta']['step'] = self.trainer.global_step
output = self.test_renderer(batch)
self.visualizer(output, batch)
return 0
def training_step(self, batch, batch_idx):
batch['step'] = self.trainer.global_step
batch['meta']['step'] = self.trainer.global_step
# training_step defines the train loop. It is independent of forward
output, loss, loss_stats, image_stats = self.network_wrapper(batch)
for key, val in loss_stats.items():
self.log(key, val)
return loss
def train_dataloader(self):
from lib.datasets.make_dataset import make_data_sampler, make_batch_data_sampler, make_collator, worker_init_fn
from torch.utils.data import DataLoader
batch_size = cfg.train.batch_size
shuffle = cfg.train.shuffle
drop_last = False
sampler = make_data_sampler(self.train_dataset, shuffle, cfg.distributed)
batch_sampler = make_batch_data_sampler(cfg, sampler, batch_size,
drop_last, max_iter=cfg.ep_iter, is_train=True)
num_workers = cfg.train.num_workers
collator = make_collator(cfg, True)
data_loader = DataLoader(self.train_dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
collate_fn=collator,
worker_init_fn=worker_init_fn)
return data_loader
# def val_dataloader(self):
# return DataLoader(
# self.val_dataset,
# batch_size=1,
# shuffle=False,
# num_workers=4,
# pin_memory=True)
def configure_optimizers(self):
from lib.train.optimizer import make_optimizer
from lib.train.scheduler import make_lr_scheduler, set_lr_scheduler
optimizer = make_optimizer(cfg, self.network)
scheduler = make_lr_scheduler(cfg, optimizer)
return [optimizer], [scheduler]
def train(cfg):
model = plwrapper(cfg)
if cfg.resume and os.path.exists(join(cfg.trained_model_dir, 'last.ckpt')):
resume_from_checkpoint = join(cfg.trained_model_dir, 'last.ckpt')
else:
resume_from_checkpoint = None
if os.path.exists(cfg.record_dir):
pass
os.makedirs(cfg.record_dir, exist_ok=True)
print(cfg, file=open(join(cfg.record_dir, 'exp.yml'), 'w'))
logger = TensorBoardLogger(save_dir=cfg.record_dir, name=cfg.exp_name)
ckpt_callback = pl.callbacks.ModelCheckpoint(
verbose=True,
dirpath=cfg.trained_model_dir,
every_n_epochs=5,
save_last=True,
save_top_k=-1,
monitor='loss',
filename="{epoch}")
# Log true learning rate, serves as LR-Scheduler callback
lr_monitor = pl.callbacks.LearningRateMonitor(logging_interval='step')
extra_args = {
# 'num_nodes': len(cfg.gpus),
'accelerator': 'gpu',
}
if len(cfg.gpus) > 0:
extra_args['strategy'] = 'ddp'
extra_args['replace_sampler_ddp'] = False
trainer = pl.Trainer(
gpus=len(cfg.gpus),
logger=logger,
resume_from_checkpoint=resume_from_checkpoint,
callbacks=[ckpt_callback, lr_monitor],
max_epochs=cfg.train.epoch,
# profiler='simple',
**extra_args
)
trainer.fit(model)
def load_ckpt(model, ckpt_path, model_name='network'):
print('Load from {}'.format(ckpt_path))
checkpoint = torch.load(ckpt_path, map_location=torch.device('cpu'))
epoch = checkpoint['epoch']
if 'state_dict' in checkpoint.keys():
checkpoint = checkpoint['state_dict']
checkpoint_ = {}
for k, v in checkpoint.items():
if not k.startswith(model_name):
continue
k = k[len(model_name)+1:]
for prefix in []:
if k.startswith(prefix):
break
else:
checkpoint_[k] = v
model.load_state_dict(checkpoint_, strict=False)
return epoch
def test(cfg):
from glob import glob
from os.path import join
from tqdm import tqdm
if False:
network = load_object(cfg.network_module, cfg.network_args)
ckptpath = sorted(glob(join(cfg.trained_model_dir, '*ckpt*')))[-1]
epoch = load_ckpt(network, ckptpath)
# cfg.visualizer_args.out += '_{}'.format(epoch)
# device = torch.device('cuda')
# network = network.to(device)
# network.train()
renderer = load_object(cfg.renderer_module, cfg.renderer_args, net=network)
model = plwrapper(cfg, mode=cfg.split)
ckptpath = join(cfg.trained_model_dir, 'last.ckpt')
if os.path.exists(ckptpath):
epoch = load_ckpt(model.network, ckptpath)
else:
myerror('{} not exists'.format(ckptpath))
epoch = -1
model.step = epoch * 1000
if len(cfg.gpus) == 1:
pass
# for key, val in model.network.models.items():print(key, sum([v.numel() for v in val.parameters()]))
# import ipdb;ipdb.set_trace()
model.visualizer.data_dir += '_{}'.format(epoch)
if cfg.split == 'test' or cfg.split == 'eval':
dataset = load_object(cfg.data_val_module, cfg.data_val_args)
elif cfg.split in ['demo', 'canonical', 'novelposes']:
dataset = load_object(cfg['data_{}_module'.format(cfg.split)], cfg['data_{}_args'.format(cfg.split)])
elif cfg.split == 'trainvis':
dataset = model.train_dataset
dataset.sample_args.nrays *= 16
ranges = cfg.get('visranges', [0, -1, 1])
if ranges[1] == -1:
ranges[1] = len(dataset)
sampler = FrameSampler(dataset, ranges)
dataloader = torch.utils.data.DataLoader(dataset,
# sampler=sampler,
# batch_sampler=batch_sampler,
batch_size=1, num_workers=cfg.test.num_workers)
extra_args = {
# 'num_nodes': len(cfg.gpus),
'accelerator': 'gpu',
}
if len(cfg.gpus) > 0:
extra_args['strategy'] = 'ddp'
# extra_args['replace_sampler_ddp'] = False
mode = 1
if mode == 1:
trainer = pl.Trainer(
gpus=len(cfg.gpus),
# resume_from_checkpoint=resume_from_checkpoint,
# ckpt_path=resume_from_checkpoint,
max_epochs=cfg.train.epoch,
# profiler="simple",
**extra_args
)
preds = trainer.predict(model, dataloader)
elif mode == 2:
device = torch.device('cuda')
for batch in dataloader:
for k in batch:
if k != 'meta' and torch.is_tensor(batch[k]):
batch[k] = batch[k].to(device)
print(batch['meta'])
# if data['meta']['index'] < 150:
# print('[info] skip data {}'.format(data['meta']['index']))
# continue
model(batch)
# device = torch.device('cuda')
# from easymocap.mytools import Timer
# import numpy as np
# for i in range(len(model.val_dataset)):
# with Timer('get data'):
# batch = model.val_dataset[i]
# with Timer('to gpu'):
# for k in batch:
# if k != 'meta' and isinstance(batch[k], np.ndarray):
# batch[k] = torch.Tensor(batch[k]).to(device)
# with Timer('forward'):
# with torch.no_grad():
# model(batch)
if __name__ == "__main__":
if cfg.fix_random:
seed_everything(666)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.test:
test(cfg)
else:
train(cfg)