-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmapper.py
279 lines (267 loc) · 15 KB
/
mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import transformer_block as tbk
from arch_execution import Tx8
from util import *
import math
# fusion_op 表示gemm算子与vector算子融合
# 算力10进制,存储二进制表示
def gemm_auto_opt_mapper(op,arch,TmTn=None,Tk=-1,fusion_op1=None,fusion_op2=None,details=False):
'''gemm算子映射切分策略搜索,默认input_stationary'''
#TmTn 代表M,N维度的size
#Tk=-1 代表Reduce维度的size,None 代表不切该维度,-1代表自动搜索,other代表具体K维度size
# i_params = [i_size, nm,nk] i_size为一份输入的大小,单位为MB;nm*nk为输入的总份数
# o_params = [o_size, nn*nm] o_size为一份输出的大小,单位为MB;nn*nm为输出的总份数
# w_params = [w_size, nn,nk] w_size为一份输出的大小,单位为MB;nn*nk为权重的总份数;
# cp=[[cp_size,cp_type],...]为计算量,单位为GFLOPs, cp_type为计算类型, 这里认为0为Vector,1为Gemm
# cm_size为通信量大小,单位MB,cm_type 0,cm_hops为通信的最大跳数
if fusion_op1!=None and details:
print('{} is fused with the last {}!'.format(op['name'],fusion_op1['name']))
if fusion_op2!=None and details:
print('{} is fused with the next {}!'.format(op['name'],fusion_op2['name']))
max_utilization=0
best_parall=[]
best_latency=0
best_cp_latency=0
best_stationary=None
total_cp_latency = 0
gemm_size = 64 # hardware support gemm of size 64
for stationary in ['input','weight']:
if stationary=='input':
dims=op['ishape']+[op['wshape'][-1]]#[b,m,k,n]输入维度为[b,m,k] 权重维度为[k,n] 输出维度为[b,m,n]
else:
dims=[1,op['wshape'][1],op['wshape'][0],op['ishape'][0]*op['ishape'][1]]#[1,n,k,b*m]输入维度为[1,n,k] 权重维度为[k,b*m] 输出维度为[1,n,b*m]
#print(dims)
tile_num=arch.config['TILE_NUM']
#print('old dims',dims)
dims=[dims[0]]+dim_norm(dims[1:],tile_num=tile_num*gemm_size)
#print('new dims',dims)
if TmTn!=None:
if stationary=='input':
Nm,Nn=[math.ceil(dims[0]*dims[1]/TmTn[0])],[math.ceil(dims[3]/TmTn[1])]
else:
Nm,Nn=[math.ceil(dims[0]*dims[1]/TmTn[1])],[math.ceil(dims[3]/TmTn[0])]
else:
Nm=split_range(dims[1],gemm_size=64*tile_num)
Nn=split_range(dims[3],gemm_size=64*tile_num)
if Tk==None:
Nk=[1]
elif Tk>0:
Nk=[math.ceil(dims[2]/Tk)]
else:
Nk=split_range(dims[2],gemm_size=64)
#print(Nk,Nm,Nn)
for nk in Nk:
for _nm in Nm:
for _nn in Nn:
nm=_nm*tile_num
nn=_nn*tile_num
cur_gemm_parall=[1,nm,nk,nn]
cp=[]
#print(dims,cur_gemm_parall)
newdims,ishape,oshape,wshape,reduce=dim_analysis('GEMM',dims,cur_gemm_parall)
i_size,w_size,o_size=MBytes(ishape),MBytes(wshape),MBytes(oshape)
if fusion_op1!=None:
i_size+=MBytes(fusion_op1['wshape'])/nm/nk
cp.append([fusion_op1['compute']/nm/nk,0])
i_params=[i_size,nm,nk]
w_params=[w_size,nn,nk]
cp.append([op['compute']/nm/nn/nk,1])
#t=op['compute']/nm/nn
#print(nm,nn)
if fusion_op2!=None:
o_size+=(MBytes(fusion_op2['wshape'])/nm/nn)
cp.append([fusion_op2['compute']/nn/nm,0])
o_params=[o_size,nm*nn]
cm_size,cm_type,cm_hops=w_params[0],0,5
#print(i_params, o_params, w_params, cp, cm_size, cm_type, cm_hops)
#print(i_params, o_params, w_params, cp, cm_size, cm_type, cm_hops,details)
sram_cap_req,total_cp_latency,_,_,tot_latency, tot_utilization=arch.execute( i_params, o_params, w_params, cp, cm_size, cm_type, cm_hops,details)
#print(arch.execute( i_params, o_params, w_params, cp, cm_size, cm_type, cm_hops))
#print("total_cp_latency",total_cp_latency)
if tot_utilization>max_utilization and sram_cap_req:
#print(sram_cap_req,i_params, o_params, w_params, cp, cm_size, cm_type, cm_hops,details)
max_utilization=tot_utilization
best_parall=cur_gemm_parall
best_latency=tot_latency
best_cp_latency=total_cp_latency
best_stationary=stationary
if details:
print('{:<15}, dims={}, best={}, stationary={}'.format(op['name'],dims,best_parall,best_stationary))
result={"latency":best_latency,'utilization':max_utilization,'cp_latency':best_cp_latency}
return result
def flashatten_mapper(model, arch, Tx_Ty=None, details=True, Head_fused=True):
# 将Q,KV分成特定的块数,同时将不同的块分配到tile上,每个tile上一块。其中Q视为input,K&V视为权重;
# Q:[B,Tx,H/A,A] KV=[B,Ty,H/A,A] S=[B,Tx,H/A,A]
# 外层循环次数 S/Tx,内层循环次数 S/Ty,一轮内层循环结束才输出部分和的结果S=[B,Tx,H/A,A],而不是内层循环次数*外层循环次数
# Head_fused 表示是否多头输入Q预加载优化
config = model.config
dims = [config['B'], config['S'], config['H_A'], config['N_A']]
tile_num = arch.config['TILE_NUM']
gemm_size = 64
dims=[dims[0]]+dim_norm([dims[1]],tile_num=tile_num*gemm_size)+dims[2:]
print(dims)
# print("config['A']",config['A'])
Tx = block_range(dims[1], min_block=64, max_block=dims[1]//arch.config['TILE_NUM'])
Ty = block_range(dims[1], min_block=64, max_block=dims[1]//arch.config['TILE_NUM'])
#print(Tx)
if Tx_Ty != None:
assert Tx_Ty[0] <= dims[1]//arch.config['TILE_NUM']
assert Tx_Ty[1] <= dims[1]//arch.config['TILE_NUM']
Tx, Ty = [Tx_Ty[0]], [Tx_Ty[1]]
#print(Tx,Ty)
max_utilization = 0
best_tx_ty = []
best_latency = 0
best_total_cp_latency = 0
for tx in Tx: # outer Q
for ty in Ty:
current_tx_ty = [tx, ty]
print(current_tx_ty)
Q_RoPE_wsize = model.config['Q']//8*tx * model.config['H_A']//model.config['N_A']/MB
K_RoPE_wsize = model.config['Q']//8*ty * model.config['H_A']//model.config['N_A']/MB
if Head_fused:
head = dims[3]
else:
head = 1
i_params = [MBytes([dims[0], tx, dims[2]])+Q_RoPE_wsize,head*math.ceil(dims[1]//tx)] # 将多头也进行overlap,隐藏Q的输入时间
o_params = [MBytes([dims[0], tx, dims[2]]),head*math.ceil(dims[1]//tx)]
w_params = [2*MBytes([dims[0], ty, dims[2]]) +K_RoPE_wsize, math.ceil(dims[1]//ty)] # K+V
vector_cp_size = model.config['B']*tx*model.config['H_A']//model.config['N_A'] + model.config['B']*ty * model.config['H_A']//model.config['N_A'] # RoPE
flash_vector_cp_size =model.config['B']* 5*tx*ty # *dims[2]
# cp=[[2*2*tx*ty*dims[2]/G,1]]
# cp=[[0,0],[2*2*tx*ty*dims[2]/G,1],[0,0]]
cp = [[vector_cp_size/G, 0], [model.config['B']*2*2*tx*ty*dims[2]/G, 1],[flash_vector_cp_size/G, 0]]
cm_size, cm_type, cm_hops = w_params[0], 0, 1
# print('test',i_params,o_params,w_params,cp,cm_size,cm_type,cm_hops)
sram_cap_req, total_cp_latency, _, _, tot_latency, tot_utilization = arch.execute(
i_params, o_params, w_params, cp, cm_size, cm_type, cm_hops,details)
# print('data',sram_cap_req,total_cp_latency,_,_,tot_latency, tot_utilization)
if tot_utilization > max_utilization and sram_cap_req:
max_utilization = tot_utilization
best_tx_ty = current_tx_ty
best_latency = tot_latency
best_total_cp_latency = total_cp_latency
# print('test',i_params,o_params,w_params,cp,cm_size,cm_type,cm_hops)
# print('data,current_tx_ty={},sram_cap_req={},total_cp_latency={},tot_latency={}, tot_utilization={}'.format(best_tx_ty,sram_cap_req,total_cp_latency,tot_latency, tot_utilization))
if details:
print('{:<15}, dims={}, best={}'.format('Flashatten', dims, best_tx_ty))
if Head_fused:
one_head_latency, one_head_cp_latency = best_latency/dims[3], best_total_cp_latency/dims[3]
else:
one_head_latency, one_head_cp_latency = best_latency, best_total_cp_latency
print('latency={}, compute latency={}'.format(one_head_latency, one_head_cp_latency))
# print(best_latency,best_total_cp_latency)
result = {"latency": dims[3]//head*best_latency, 'utilization': max_utilization,'cp_latency': dims[3]//head*best_total_cp_latency}
return result
def vector_mapper(op,arch,splits=None,details=False):
assert op['ishape']==op['oshape']
io_shape,w_shape=op['ishape'],op['wshape']
assert (op['name'] in ['RMSNorm','RMSNorm2','Hadamard','ResAdd','ResAdd2','SiLU',]) and (op['type']=='Vector')
i_split=op['ishape'][1]#RMS只能切一个维度
if splits==None:
if op['name'] in ['Hadamard','ResAdd','ResAdd2','SiLU']:
i_split=i_split*op['ishape'][2]
splits=split_range(i_split,max_block=None, gemm_size=1)
else:
splits = [splits]
max_utilization = 0
best_split = []
best_latency =0
total_cp_latency = 0
#print('vector',splits)
for split in splits:
i_params=[MBytes(io_shape)/split,split]
o_params=[MBytes(io_shape)/split,split]
w_params=[MBytes(w_shape)/split,split]#逐点运算输出切分数等于输入切分数,默认输出切分数=输入切分数*权重切分数
cp=[[op['compute']/split,0]]
#print(op['compute'],op['compute']/split)
cm_size,cm_type,cm_hops=0,0,0
sram_cap_req,total_cp_latency,_,_,tot_latency, tot_utilization=arch.execute(i_params, o_params, w_params, cp,cm_size, cm_type,cm_hops,details)
#print(sram_cap_req,total_cp_latency)
if tot_utilization>max_utilization and sram_cap_req:
max_utilization=tot_utilization
best_split=split
best_latency=tot_latency
if details:
print('{:<15}, best={}'.format(op['name'], best_split))
result = {"latency": best_latency,
'utilization': max_utilization, 'cp_latency': total_cp_latency}
return result
def manual_mapper(model, arch, QKV_fusion=True, preset=True, details=True):
# 指定映射
Layers = model.config['L']
ops = model.ops
mapping_result = {}
if details:
print('-'*40+'mapping_processing'+'-'*40)
#1
#mapping_result['RMSNorm']=vector_mapper(ops['RMSNorm'],arch,splits=None,details=details)
if QKV_fusion:
mapping_result['RMSNorm']=vector_mapper(ops['RMSNorm'],arch,splits=None,details=details)
ops["QKV_fusion"] = model.gen_gemm("QKV_fusion", [model.config["B"], model.config["S"], model.config["D_QKV"], 3*model.config["H_QKV"]])
TmTn = [256, 8] if preset else None
#mapping_result['QKV_fusion']=gemm_auto_opt_mapper(ops['QKV_fusion'],arch,TmTn=TmTn,fusion_op1=None,details=details)
mapping_result['QKV_fusion'] = gemm_auto_opt_mapper(ops['QKV_fusion'], arch, TmTn=TmTn,details=details)
del ops['Q_proj']
del ops['K_proj']
del ops['V_proj']
del ops['RMSNorm']
else:
TmTn = [256, 32] if preset else None
mapping_result['RMSNorm']=vector_mapper(ops['RMSNorm'],arch,splits=None,details=details)
mapping_result['Q_proj'] = gemm_auto_opt_mapper(ops['Q_proj'], arch, TmTn=TmTn, details=details)
mapping_result['K_proj'] = gemm_auto_opt_mapper(ops['K_proj'], arch, TmTn=TmTn, details=details)
mapping_result['V_proj'] = gemm_auto_opt_mapper(ops['V_proj'], arch, TmTn=TmTn, details=details)
del ops['RMSNorm']
del ops['Q_proj']
# 2
Tx_Ty = [256, 256] if preset else None # wanghuizheng
mapping_result['Flashatten'] = flashatten_mapper(model, arch, Tx_Ty=Tx_Ty, details=details, Head_fused=True)
del ops['RoPE(Q)']
del ops['RoPE(K)']
del ops['QK^T']
del ops['Softmax']
del ops['AV']
mapping_result['Linear']=gemm_auto_opt_mapper(ops['Linear'],arch,details=details)
mapping_result['RMSNorm2']=vector_mapper(ops['RMSNorm2'],arch,splits=None,details=details)
mapping_result['ResAdd']=vector_mapper(ops['ResAdd'],arch,splits=None,details=details)
#3
TmTn=None# [16,256] #if preset else None
#mapping_result['FFNup']=gemm_auto_opt_mapper(ops['FFNup'],arch,TmTn=TmTn,details=details)
#mapping_result['SiLU']=vector_mapper(ops['SiLU'],arch,splits=None,details=details)
mapping_result['FFNup&SiLU']=gemm_auto_opt_mapper(ops['FFNup'],arch,TmTn=TmTn,fusion_op2=ops['SiLU'],details=details)
del ops['SiLU']
mapping_result['FFNgate'] = gemm_auto_opt_mapper(ops['FFNgate'], arch, TmTn=TmTn, details=details)
mapping_result['Hadamard'] = vector_mapper(ops['Hadamard'], arch, splits=None)
TmTn = [4, 128] if preset else None
mapping_result['FFNdown'] = gemm_auto_opt_mapper(ops['FFNdown'], arch, TmTn=TmTn, details=details)
mapping_result['ResAdd2'] = vector_mapper(ops['ResAdd2'], arch, splits=None, details=details)
print('-'*40+'mapping_result'+'-'*40)
tot_latency = 0
tot_cp_latency = 0
tot_utilization = 0
utilization=0
for key, item in mapping_result.items():
try:
tot_latency += item['latency']
tot_cp_latency += item['cp_latency']
tot_utilization += item['utilization']
print('{:<15}, latency(ms)={:>10.6f}, utilization(%)={:>10.6f}, compute latency(ms)={:>10.6f}'.format(
key, item['latency'], item['utilization']*100, item['cp_latency']))
except:
print('{:<15}, No suitable mapping result! '.format(key))
utilization=tot_cp_latency/(tot_latency+1e-35)
mapping_result['Total'] = {
"latency": tot_latency, 'utilization':utilization , 'cp_latency': tot_cp_latency}
print('{:<15}, latency(ms)={:>10.6f}, utilization(%)={:>10.6f}, compute latency(ms)={:>10.6f}'.format(
'Total Layers', tot_latency*Layers, utilization*100, tot_cp_latency*Layers))
return mapping_result
if __name__ == "__main__":
llm_config =load_config("./input/transformer/input0.json")
#llm_config =load_config("./input/transformer/llama7b.json")
llama7b = tbk.Llama_block(llm_config)
print(llama7b.config)
tx8_config = load_config('hardware_parameter.json')
hardware = Tx8(tx8_config)
print(hardware.config)
# preset 是否使用预设切分;details是否打印映射的详细信息
mapping_result = manual_mapper(llama7b, hardware, preset=False, details=False)