forked from sun11/QTFaceRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfacerecognize.h
70 lines (63 loc) · 2.3 KB
/
facerecognize.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
#ifndef FACERECOGNIZE_H
#define FACERECOGNIZE_H
// eigenface.c, by Robin Hewitt, 2007
//
// Example program showing how to implement eigenface with OpenCV
// Usage:
//
// First, you need some face images. I used the ORL face database.
// You can download it for free at
// www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
//
// List the training and test face images you want to use in the
// input files train.txt and test.txt. (Example input files are provided
// in the download.) To use these input files exactly as provided, unzip
// the ORL face database, and place train.txt, test.txt, and eigenface.exe
// at the root of the unzipped database.
//
// To run the learning phase of eigenface, enter
// eigenface train
// at the command prompt. To run the recognition phase, enter
// eigenface test
#include <QFileInfo>
#include <stdio.h>
#include <string>
//#include <string>
#include <vector>
#include "cv.h"
#include "cvaux.h"
#include "highgui.h"
using namespace std;
class FaceRec {
public:
FaceRec();
~FaceRec();
int recCount; // count the times of recognizing people successfully
int iCount; // the total times of count
IplImage ** faceImgArr; // array of face images
CvMat * personNumTruthMat; // array of person numbers
int nTrainFaces; // the number of training images
int nEigens; // the number of eigenvalues
int nPersons; // the number of people in the training set
vector<string> personNames;
IplImage * pAvgTrainImg; // the average image
IplImage ** eigenVectArr; // eigenvectors
CvMat * eigenValMat; // eigenvalues
CvMat * projectedTrainFaceMat; // projected training faces
CvMat * trainPersonNumMat; // the person numbers during training
float * projectedTestFace;
float fConfidence;
float threshold;
void learn();
void recognize();
int recFromFrame(IplImage *faceImage);
double average(vector<double> personConfi);
void unloadTrainingdata();
private:
void doPCA();
void storeTrainingData();
int loadTrainingData(CvMat ** pTrainPersonNumMat);
int findNearestNeighbor(float * projectedTestFace);
int loadFaceImgArray(const char * filename);
};
#endif // FACERECOGNIZE_H