-
Notifications
You must be signed in to change notification settings - Fork 26
/
preactresnet.py
203 lines (168 loc) · 7.58 KB
/
preactresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
'''Pre-activation ResNet in PyTorch.
Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Identity Mappings in Deep Residual Networks. arXiv:1603.05027
'''
import torch
import torch.nn as nn
import torch.nn.functional as F
track_running_stats=True
affine=True
normal_func = nn.BatchNorm2d
# track_running_stats=False
# affine=True
# normal_func = nn.InstanceNorm2d
if not track_running_stats:
print('BN track False')
class PreActBlock(nn.Module):
'''Pre-activation version of the BasicBlock.'''
expansion = 1
def __init__(self, in_planes, planes, stride=1, activation='ReLU', softplus_beta=1):
super(PreActBlock, self).__init__()
self.bn1 = normal_func(in_planes, track_running_stats=track_running_stats, affine=affine)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = normal_func(planes, track_running_stats=track_running_stats, affine=affine)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
)
if activation == 'ReLU':
self.relu = nn.ReLU(inplace=True)
print('ReLU')
elif activation == 'Softplus':
self.relu = nn.Softplus(beta=softplus_beta, threshold=20)
print('Softplus')
elif activation == 'GELU':
self.relu = nn.GELU()
print('GELU')
elif activation == 'ELU':
self.relu = nn.ELU(alpha=1.0, inplace=True)
print('ELU')
elif activation == 'LeakyReLU':
self.relu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
print('LeakyReLU')
elif activation == 'SELU':
self.relu = nn.SELU(inplace=True)
print('SELU')
elif activation == 'CELU':
self.relu = nn.CELU(alpha=1.2, inplace=True)
print('CELU')
elif activation == 'Tanh':
self.relu = nn.Tanh()
print('Tanh')
def forward(self, x):
out = self.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(self.relu(self.bn2(out)))
out += shortcut
return out
class PreActBottleneck(nn.Module):
'''Pre-activation version of the original Bottleneck module.'''
expansion = 4
def __init__(self, in_planes, planes, stride=1, activation='ReLU', softplus_beta=1):
super(PreActBottleneck, self).__init__()
self.bn1 = normal_func(in_planes, track_running_stats=track_running_stats, affine=affine)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn2 = normal_func(planes, track_running_stats=track_running_stats, affine=affine)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn3 = normal_func(planes, track_running_stats=track_running_stats, affine=affine)
self.conv3 = nn.Conv2d(planes, self.expansion*planes, kernel_size=1, bias=False)
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False)
)
def forward(self, x):
out = F.relu(self.bn1(x))
shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x
out = self.conv1(out)
out = self.conv2(F.relu(self.bn2(out)))
out = self.conv3(F.relu(self.bn3(out)))
out += shortcut
return out
class PreActResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10, normalize = False, normalize_only_FN = False, scale = 15, activation='ReLU', softplus_beta=1):
super(PreActResNet, self).__init__()
self.in_planes = 64
self.normalize = normalize
self.normalize_only_FN = normalize_only_FN
self.scale = scale
self.activation = activation
self.softplus_beta = softplus_beta
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.bn = normal_func(512 * block.expansion, track_running_stats=track_running_stats, affine=affine)
if self.normalize:
self.linear = nn.Linear(512*block.expansion, num_classes, bias=False)
else:
self.linear = nn.Linear(512*block.expansion, num_classes)
if activation == 'ReLU':
self.relu = nn.ReLU(inplace=True)
print('ReLU')
elif activation == 'Softplus':
self.relu = nn.Softplus(beta=softplus_beta, threshold=20)
print('Softplus')
elif activation == 'GELU':
self.relu = nn.GELU()
print('GELU')
elif activation == 'ELU':
self.relu = nn.ELU(alpha=1.0, inplace=True)
print('ELU')
elif activation == 'LeakyReLU':
self.relu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
print('LeakyReLU')
elif activation == 'SELU':
self.relu = nn.SELU(inplace=True)
print('SELU')
elif activation == 'CELU':
self.relu = nn.CELU(alpha=1.2, inplace=True)
print('CELU')
elif activation == 'Tanh':
self.relu = nn.Tanh()
print('Tanh')
print('Use activation of ' + activation)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride,
activation=self.activation, softplus_beta=self.softplus_beta))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.relu(self.bn(out))
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
if self.normalize_only_FN:
out = F.normalize(out, p=2, dim=1)
if self.normalize:
out = F.normalize(out, p=2, dim=1) * self.scale
for _, module in self.linear.named_modules():
if isinstance(module, nn.Linear):
module.weight.data = F.normalize(module.weight, p=2, dim=1)
return self.linear(out)
def PreActResNet18(num_classes=10, normalize = False, normalize_only_FN = False, scale = 15, activation='ReLU', softplus_beta=1):
return PreActResNet(PreActBlock, [2,2,2,2], num_classes=num_classes, normalize = normalize
, normalize_only_FN = normalize_only_FN, scale = scale, activation=activation, softplus_beta=softplus_beta)
def PreActResNet34():
return PreActResNet(PreActBlock, [3,4,6,3])
def PreActResNet50():
return PreActResNet(PreActBottleneck, [3,4,6,3])
def PreActResNet101():
return PreActResNet(PreActBottleneck, [3,4,23,3])
def PreActResNet152():
return PreActResNet(PreActBottleneck, [3,8,36,3])
def test():
net = PreActResNet18()
y = net((torch.randn(1,3,32,32)))
print(y.size())
# test()