-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
123 lines (111 loc) · 3.97 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import torch
import spacy
import random
from torchtext.vocab import build_vocab_from_iterator
from torchtext.data import get_tokenizer, to_map_style_dataset
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pad_sequence
from functools import partial
def yiled_token(dataset, tokenizer):
index = 0 if type(tokenizer.keywords["spacy"]) == spacy.lang.de.German else 1
for items in dataset:
yield tokenizer(items[index].lower())
def transform2token(dataset, tokenizer_src, tokenizer_trg, vocab_src, vocab_trg):
length = len(dataset)
for i in range(length):
src, trg = dataset._data[i]
src = tokenizer_src(src)
trg = tokenizer_trg(trg)
src = (
[vocab_src["<bos>"]]
+ [vocab_src[x.lower()] for x in src]
+ [vocab_src["<eos>"]]
)
trg = (
[vocab_trg["<bos>"]]
+ [vocab_trg[x.lower()] for x in trg]
+ [vocab_trg["<eos>"]]
)
dataset._data[i] = (torch.LongTensor(src), torch.LongTensor(trg))
return dataset
def collate_batch(batch, include_length=False):
src_list, trg_list, src_len_list = [], [], []
for src, trg in batch:
src_list.append(src)
trg_list.append(trg)
src_len_list.append(len(src))
if include_length:
return (
pad_sequence(src_list),
torch.LongTensor(src_len_list),
pad_sequence(trg_list),
)
else:
return pad_sequence(src_list), pad_sequence(trg_list)
def batch_sample(dataset, batch_size):
indices = [(i, len(s[0])) for i, s in enumerate(dataset)]
while True:
random.shuffle(indices)
pooled_indices = []
for i in range(0, len(indices), batch_size * 100):
pooled_indices.extend(
sorted(
indices[i : i + batch_size * 100], key=lambda x: x[1], reverse=True
)
)
pooled_indices = [x[0] for x in pooled_indices]
for i in range(0, len(pooled_indices), batch_size):
yield pooled_indices[i : i + batch_size]
def get_tokenizer_and_vocab(dataset):
tokenizer_de, tokenizer_en = get_tokenizer(
"spacy", "de_core_news_sm"
), get_tokenizer("spacy", "en_core_web_sm")
vocab_de = build_vocab_from_iterator(
yiled_token(dataset, tokenizer_de),
min_freq=2,
specials=["<pad>", "<unk>", "<bos>", "<eos>"],
)
vocab_en = build_vocab_from_iterator(
yiled_token(dataset, tokenizer_en),
min_freq=2,
specials=["<pad>", "<unk>", "<bos>", "<eos>"],
)
vocab_de.set_default_index(1)
vocab_en.set_default_index(1)
return tokenizer_de, tokenizer_en, vocab_de, vocab_en
def get_dataloader_and_etc(
train_dataset, val_dataset, test_dataset, batch_size=8, include_length=False
):
tokenizer_de, tokenizer_en, vocab_de, vocab_en = get_tokenizer_and_vocab(
train_dataset
)
train_dataset = transform2token(
train_dataset, tokenizer_de, tokenizer_en, vocab_de, vocab_en
)
val_dataset = transform2token(
val_dataset, tokenizer_de, tokenizer_en, vocab_de, vocab_en
)
test_dataset = transform2token(
test_dataset, tokenizer_de, tokenizer_en, vocab_de, vocab_en
)
train_dataloader = DataLoader(
train_dataset,
batch_sampler=batch_sample(train_dataset, batch_size),
collate_fn=partial(collate_batch, include_length=include_length),
)
val_dataloader = DataLoader(
test_dataset,
batch_sampler=batch_sample(test_dataset, batch_size),
collate_fn=partial(collate_batch, include_length=include_length),
)
test_dataloader = DataLoader(
val_dataset,
batch_sampler=batch_sample(val_dataset, batch_size),
collate_fn=partial(collate_batch, include_length=include_length),
)
return (
train_dataloader,
val_dataloader,
test_dataloader,
(tokenizer_de, tokenizer_en, vocab_de, vocab_en),
)