-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrafficlightdetector.py
151 lines (112 loc) · 4.6 KB
/
trafficlightdetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import cv2
import numpy as np
class TrafficLightDetector:
def __init__(self, reference_images, color_bounds, color_threshold=50, feature_threshold=10, display=False):
self.reference_images = reference_images
self.feature_threshold = feature_threshold
self.color_threshold = color_threshold
self.color_bounds = color_bounds
self.display = display
def get_state(self, query):
view = query.copy()
for reference in self.reference_images:
traffic_light, tl, br = self.feature_matching(query, reference)
if traffic_light is not None:
break
if traffic_light is None:
if self.display:
cv2.imshow('TrafficLightDetector', view)
return None
state = self.get_color(traffic_light)
if self.display:
s = state[0]
if s != None:
color = (0, 0, 0)
if s == 'red':
color = (0, 0, 255)
elif s == 'green':
color = (0, 255, 0)
cv2.rectangle(view, tl, br, color, 3)
cv2.imshow('TrafficLightDetector', view)
return state[0]
def get_color(self, traffic_light):
hsv = cv2.cvtColor(traffic_light, cv2.COLOR_BGR2HSV)
color_scores = []
for color in self.color_bounds:
bound = self.color_bounds[color]
lower = np.array(bound[0])
upper = np.array(bound[1])
mask = cv2.inRange(hsv, lower, upper)
# num_white = cv2.countNonZero(mask)
num_white = np.sum(mask == 255)
height, width = mask.shape
num_pix = height*width
percent = (num_white/num_pix)*100
if percent >= self.color_threshold:
color_scores.append((color, percent))
if len(color_scores) == 0:
return None
color_scores = sorted(color_scores, key=lambda x:x[1], reverse=True)
return color_scores[0]
def feature_matching(self, query, reference):
def get_ROI(img, points):
"""
Returns image after being cropped to coordinates defined by the list points
"""
x_list = []
y_list = []
for i in range(0,len(points),2):
x_list.append(points[i])
for i in range(1,len(points),2):
y_list.append(points[i])
tl = (min(x_list),min(y_list))
br = (max(x_list),max(y_list))
roi = img[tl[1]:br[1], tl[0]:br[0]]
return roi, tl, br
def match_features(reference, query, min_match_count = 10):
"""
Returns list of destination points
"""
try:
ref_grey = cv2.cvtColor(reference, cv2.COLOR_BGR2GRAY)
except:
ref_grey = reference
try:
query_grey = cv2.cvtColor(query, cv2.COLOR_BGR2GRAY)
except:
query_grey = query
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(query_grey,None)
kp2, des2 = sift.detectAndCompute(ref_grey,None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>min_match_count:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)
matchesMask = mask.ravel().tolist()
h,w = query_grey.shape
pts = np.float32([ [0,0],[0,h-1],[w-1,h-1],[w-1,0] ]).reshape(-1,1,2)
dst = cv2.perspectiveTransform(pts,M)
dst_list = dst.ravel().tolist()
else:
dst_list = []
for i,pnt in enumerate(dst_list):
dst_list[i] = int(pnt)
return dst_list
dst_points = match_features(query, reference, self.feature_threshold)
if dst_points != []:
roi, tl, br = get_ROI(query, dst_points)
return roi, tl, br
return None, None, None
def main():
pass
if __name__ == "__main__":
main()