-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
81 lines (62 loc) · 3.82 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import argparse
import os
from torch.backends import cudnn
from data_loader import data_loader
from solver import Solver
def str2bool(v):
return v.lower() in ('true')
def main(config):
# For fast training.
cudnn.benchmark = True
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
if not os.path.exists(config.model_save_dir):
os.makedirs(config.model_save_dir)
if not os.path.exists(config.sample_dir):
os.makedirs(config.sample_dir)
if not os.path.exists(config.result_dir):
os.makedirs(config.result_dir)
data_loader_ = data_loader(config.data_dir, batch_size=config.batch_size, mode=config.mode, num_workers=config.num_workers)
solver = Solver(data_loader_, config)
if config.mode == 'train':
solver.train()
elif config.mode == 'convert':
solver.convert()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
dataset_default = 'VCC2016'
parser.add_argument('--num_spk', type=float, default=4, help='Number of speakers.')
parser.add_argument('--dataset', type=str, default=dataset_default, choices=['VCC2016', 'VCC2018'],
help='Available datasets: VCC2016 and VCC2018 (Default: VCC2016).')
parser.add_argument('--lambda_cyc', type=float, default=10, help='Weight of cycle loss.')
parser.add_argument('--lambda_gp', type=float, default=5, help='Weight of gradient penalty.')
parser.add_argument('--lambda_id', type=float, default=5, help='Weight of identity loss.')
parser.add_argument('--batch_size', type=int, default=8, help='Mini-batch size.')
parser.add_argument('--num_iters', type=int, default=100000, help='Number of total iterations for training discriminator.')
parser.add_argument('--num_iters_decay', type=int, default=100000, help='Number of iterations for decaying learning rate.')
parser.add_argument('--g_lr', type=float, default=0.0002, help='Learning rate of generator.')
parser.add_argument('--d_lr', type=float, default=0.0001, help='Learning rate of discriminator.')
parser.add_argument('--n_critic', type=int, default=5, help='Number of epochs discriminator update for one generator update.')
parser.add_argument('--beta1', type=float, default=0.5, help='Beta1 for Adam optimizer.')
parser.add_argument('--beta2', type=float, default=0.999, help='Beta2 for Adam optimizer.')
parser.add_argument('--resume_iters', type=int, default=None, help='The start step of training.')
# Test configuration.
parser.add_argument('--test_iters', type=int, default=200000 , help='The start step of testing.')
parser.add_argument('--src_speaker', type=str, default="TM1", help='Source speaker for testing.')
parser.add_argument('--trg_speaker', type=str, default="['TM1', 'SF1']", help='String list representation of target speakers eg. "[a,b]".')
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'convert'])
parser.add_argument('--use_tensorboard', type=str2bool, default=True)
parser.add_argument('--data_dir', type=str, default='data/processed')
parser.add_argument('--test_dir', type=str, default='data/spk_test')
parser.add_argument('--log_dir', type=str, default='outputs/logs')
parser.add_argument('--model_save_dir', type=str, default='outputs/models')
parser.add_argument('--sample_dir', type=str, default='outputs/samples')
parser.add_argument('--result_dir', type=str, default='outputs/results')
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=2000)
parser.add_argument('--model_save_step', type=int, default=10000)
parser.add_argument('--lr_update_step', type=int, default=100000)
config = parser.parse_args()
print(config)
main(config)