-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsupervised_classifiers.py
392 lines (319 loc) · 16.2 KB
/
supervised_classifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import numpy as np
from sklearn.model_selection import train_test_split
# from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
# from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import roc_curve, auc, roc_auc_score
from sklearn.preprocessing import LabelBinarizer
from sklearn.metrics import RocCurveDisplay
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import classification_report
from sklearn.linear_model import SGDClassifier
import xgboost as xgb
# To save and load models
from joblib import dump, load
# from sklearn import metrics
# from sklearn.metrics import classification_report
# from sklearn.metrics import confusion_matrix
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from tqdm import tqdm
from line_printer import LinePrinter
from collections import Counter
import os
global_run_counter = 0
def check_and_create_folder(path_):
if not os.path.isdir(path_):
os.makedirs(path_)
# Testing Git updates
class SupervisedClassifier:
def __init__(self, actions: [int], action_description: [str], include_volatility: bool, model_path='models',
plot_path='plots', report_path='reports'):
"""
Sequence in this class:
1. call generate_test_train
2. call generate_y_one_hot
:param data_columns:
:param no_of_actions:
"""
check_and_create_folder(model_path)
check_and_create_folder(plot_path)
check_and_create_folder(report_path)
self.model_pipeline = []
self.X_train = None
self.y_train = None
self.X_test = None
self.y_test = None
self.y_score = []
self.y_onehot_test = None
# self.model_names = ['MLP', 'Gradient Boosting', 'Logistic Regression', 'KNN', 'Random Forest', 'Decision Tree',
# 'Gaussian', 'SVM','XGBoost']
self.model_names = ['Random Forest']
self.xgb_params = {'booster': 'gbtree', 'lambda': 3.12800432790444e-08, 'alpha': 1.9119332110454214e-06,
'max_depth': 7,
'eta': 0.39440064197237373, 'gamma': 0.11824872282374695, 'grow_policy': 'depthwise'}
self.model_path = model_path
self.plot_path = plot_path
self.report_path = report_path
# self.acc_list = []
# self.auc_list = []
self.accuracy_dic = {model: [] for model in self.model_names}
# self.confusion_matrix_list = []
self.n_classes = len(action_description)
self.target_names = action_description
self.actions = actions
self.random_state = 123
self.rounding_precision = 2
self.include_volatility = include_volatility
self.line_printer = LinePrinter()
def generate_test_train(self, train_data, test_data):
if ((len(train_data) == 0) | (len(test_data) == 0)):
return False
train_data_shuffled = train_data.copy()
test_data_shuffled = test_data.copy()
train_data_shuffled = train_data_shuffled.iloc[np.random.permutation(len(train_data_shuffled))]
test_data_shuffled = test_data_shuffled.iloc[np.random.permutation(len(test_data_shuffled))]
print("Generating test_train data")
columns_to_include = -3
if self.include_volatility:
columns_to_include = -2
X_train = train_data_shuffled[train_data_shuffled.columns[:columns_to_include]]
X_test = test_data_shuffled[test_data_shuffled.columns[:columns_to_include]]
y_train = train_data_shuffled['action']
y_test = test_data_shuffled['action']
# print(y_test)
self.X_train, _, self.y_train, __ = train_test_split(X_train, y_train, test_size=0.01,
random_state=self.random_state)
_, self.X_test, __, self.y_test = train_test_split(X_test, y_test, test_size=0.99,
random_state=self.random_state)
self.y_onehot_test = self.generate_y_one_hot()
# print('len(Counter(self.y_test): ', len(Counter(self.y_test)))
has_enough_data = (len(Counter(self.y_test)) == self.n_classes)
return has_enough_data
def generate_y_one_hot(self):
label_binarizer = LabelBinarizer().fit(self.y_train)
y_onehot_test = label_binarizer.transform(self.y_test)
return y_onehot_test
def generate_pipeline(self):
# self.model_pipeline.append(MLPClassifier(early_stopping=False))
# self.model_pipeline.append(GradientBoostingClassifier())
# self.model_pipeline.append(LogisticRegression(max_iter=2000))
# self.model_pipeline.append(KNeighborsClassifier())
self.model_pipeline.append(RandomForestClassifier(n_estimators=183, criterion='log_loss', max_depth=28,
bootstrap=True))
# self.model_pipeline.append(DecisionTreeClassifier())
# self.model_pipeline.append(GaussianNB())
# self.model_pipeline.append(SGDClassifier(loss='log_loss'))
# self.model_pipeline.append(xgb.Booster(**params))
# self.model_pipeline.append(xgb.XGBClassifier(**self.xgb_params))
def load_random_forest_and_evaluate(self):
global global_run_counter
self.line_printer.print_text("Loading Random Forest Model")
model_name = 'Random Forest_Optimized'
model = load('models/best_random_forest_model.joblib')
y_pred = model.predict(self.X_test)
# model_y_score = fitted_model.predict_proba(self.X_test)
# print('model_y_score: ', model_y_score)
report = classification_report(self.y_test.to_numpy(), y_pred, output_dict=True,
digits=self.rounding_precision)
# target_names = self.target_names,
report_accuracy = report['accuracy']
# print('report[accuracy]: ', round(report_accuracy, 2))
# self.accuracy_dic[model_name].append(round(report_accuracy, self.rounding_precision))
# print('Generating Confusion Matrix')
confusion = confusion_matrix(self.y_test.to_numpy(), y_pred, labels=self.actions)
(pd.DataFrame(confusion)).to_csv(self.report_path + "/" + model_name + '_Run_' + str(global_run_counter)
+ '_confusion_matrix.csv')
print("Saving model results as: ", self.report_path + "/" + model_name + '_Run_' + str(global_run_counter)
+ '_report.csv')
report_df = pd.DataFrame(report)
(round(report_df, self.rounding_precision).T).to_csv(
self.report_path + "/" + model_name + '_Run_' + str(global_run_counter)
+ '_report.csv')
# self.y_score.append(model_y_score)
# print("Plotting model results for ", model_name + " Run " + str(global_run_counter))
# self.plot_all_OvR_ROC(model_name + "_Run_" + str(global_run_counter), model_y_score)
self.line_printer.print_line()
pd.DataFrame(self.accuracy_dic).to_csv(self.report_path + '/Accuracy_Run_' + str(global_run_counter) + '.csv')
global_run_counter += 1
return self.y_score
def evaluate_model(self):
global global_run_counter
self.line_printer.print_text('Starting Run ' + str(global_run_counter))
for model_counter in tqdm(range(len(self.model_pipeline))):
# run the models for the first time
model_name = self.model_names[model_counter]
self.line_printer.print_line()
print("Starting Model: ", model_name, ' with test_size: ', len(self.X_test), ' and train size: ',
len(self.X_train))
model_file_name = self.model_path + "/" + model_name + '.joblib'
if global_run_counter == 0:
model = self.model_pipeline[model_counter]
# Load the models
else:
print('Loading model: ', model_name)
model = load(model_file_name)
fitted_model = model.fit(self.X_train, self.y_train)
print("Saving model ", model_name)
dump(fitted_model, model_file_name)
y_pred = model.predict(self.X_test)
#model_y_score = fitted_model.predict_proba(self.X_test)
# print('model_y_score: ', model_y_score)
report = classification_report(self.y_test.to_numpy(), y_pred, output_dict=True,
digits=self.rounding_precision)
# target_names = self.target_names,
report_accuracy = report['accuracy']
# print('report[accuracy]: ', round(report_accuracy, 2))
self.accuracy_dic[model_name].append(round(report_accuracy, self.rounding_precision))
# print('Generating Confusion Matrix')
confusion = confusion_matrix(self.y_test.to_numpy(), y_pred, labels=self.actions)
(pd.DataFrame(confusion)).to_csv(self.report_path + "/" + model_name + '_Run_' + str(global_run_counter)
+ '_confusion_matrix.csv')
print("Saving model results as: ", self.report_path + "/" + model_name + '_Run_' + str(global_run_counter)
+ '_report.csv')
report_df = pd.DataFrame(report)
(round(report_df, self.rounding_precision).T).to_csv(
self.report_path + "/" + model_name + '_Run_' + str(global_run_counter)
+ '_report.csv')
# self.y_score.append(model_y_score)
# print("Plotting model results for ", model_name + " Run " + str(global_run_counter))
# self.plot_all_OvR_ROC(model_name + "_Run_" + str(global_run_counter), model_y_score)
self.line_printer.print_line()
pd.DataFrame(self.accuracy_dic).to_csv(self.report_path + '/Accuracy_Run_' + str(global_run_counter) + '.csv')
global_run_counter += 1
return self.y_score
def plot_confusion_matrix(self):
fig = plt.figure(figsize=(50, 25))
for i in range(len(self.confusion_matrix_list)):
confusion = self.confusion_matrix_list[i]
model_name = self.model_list[i]
sub = fig.add_subplot(2, 3, i + 1).set_title(model_name)
confusion_plot = sns.heatmap(confusion, annot=True, cmap='Blues_r')
confusion_plot.set_xlabel('Predicted Values')
confusion_plot.set_ylabel('Actual Values')
# def accuracy_results(self):
# return pd.DataFrame({'Model': self.model_list, ' Accuracy': self.acc_list, 'AUC': self.auc_list})
def calculate_ROC_value_using_micro_averaged_OvR(self):
# store the fpr, tpr, and roc_auc for all averaging strategies
fpr, tpr, roc_auc = dict(), dict(), dict()
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_onehot_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
print(f"Micro-averaged One-vs-Rest ROC AUC score:\n{roc_auc['micro']:.2f}")
def generate_fpr_tpr_for_ROC_curve_using_the_OvR_macro_average(self, y_score):
fpr, tpr, roc_auc = dict(), dict(), dict()
for i in range(self.n_classes):
# print("self.y_onehot_test[:,", i,"]: ", self.y_onehot_test[:, i])
# print("y_score[:, i]: ", y_score[:, i])
fpr[i], tpr[i], _ = roc_curve(self.y_onehot_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
fpr_grid = np.linspace(0.0, 1.0, 1000)
# Interpolate all ROC curves at these points
mean_tpr = np.zeros_like(fpr_grid)
for i in range(self.n_classes):
mean_tpr += np.interp(fpr_grid, fpr[i], tpr[i]) # linear interpolation
# Average it and compute AUC
mean_tpr /= self.n_classes
fpr["macro"] = fpr_grid
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
return fpr["macro"], tpr["macro"], roc_auc["macro"]
def calculate_ROC_curve_using_OvR_average(self, average_type='micro'):
if ((average_type == 'micro') | (average_type == 'macro')):
the_roc_auc_ovr = roc_auc_score(
self.y_test,
y_score,
multi_class="ovr",
average=average_type,
)
print(f"Micro-averaged One-vs-Rest ROC AUC score:\n{the_roc_auc_ovr:.2f}")
return the_roc_auc_ovr
else:
raise ValueError("Average type can only be micro or macro")
def plot_ROC_curve_for__specific_action(self, action):
class_id = np.flatnonzero(label_binarizer.classes_ == action)[0]
RocCurveDisplay.from_predictions(
y_onehot_test[:, class_id],
y_score[:, class_id],
name=f"{class_of_interest} vs the rest",
color="darkorange",
)
plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
plt.axis("square")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("One-vs-Rest ROC curves:\nVirginica vs (Setosa & Versicolor)")
plt.legend()
plt.show()
def plot_ROC_curve_using_micro_averaged_OvR(self):
RocCurveDisplay.from_predictions(
y_onehot_test.ravel(),
y_score.ravel(),
name="micro-average OvR",
color="darkorange",
)
plt.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
plt.axis("square")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Micro-averaged One-vs-Rest\nReceiver Operating Characteristic")
plt.legend()
plt.show()
def plot_all_OvR_ROC(self, plot_name: str, y_score, show_plot=False, save_plot=True, plot_micro=True,
plot_macro=True, plot_all=False):
from itertools import cycle
fig, ax = plt.subplots(figsize=(20, 15))
fpr, tpr, roc_auc = dict(), dict(), dict()
# Compute micro-average ROC curve and ROC area
# self.line_printer.print_text('len(y_score): '+str(len(y_score.ravel())))
# self.line_printer.print_text('len(y_onehot_test.ravel()): ' + str(len(self.y_onehot_test.ravel())))
fpr["micro"], tpr["micro"], _ = roc_curve(self.y_onehot_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
if plot_micro | plot_all:
plt.plot(
fpr["micro"],
tpr["micro"],
label=f"micro-average ROC curve (AUC = {roc_auc['micro']:.2f})",
color="deeppink",
linestyle=":",
linewidth=4,
)
macro_fpr, macro_tpr, roc_ = self.generate_fpr_tpr_for_ROC_curve_using_the_OvR_macro_average(y_score)
if plot_macro | plot_all:
plt.plot(
macro_fpr,
macro_tpr,
label=f"macro-average ROC curve (AUC = {roc_:.2f})",
color="navy",
linestyle=":",
linewidth=4,
)
if plot_all:
colors = cycle(["aqua", "darkorange", "cornflowerblue", "red", "black", "brown", "grey"])
for class_id, color in zip(range(self.n_classes), colors):
RocCurveDisplay.from_predictions(
self.y_onehot_test[:, class_id],
y_score[:, class_id],
name=f"ROC curve for {self.target_names[class_id]}",
color=color,
ax=ax,
)
plt.plot([0, 1], [0, 1], "k--", label="ROC curve for chance level (AUC = 0.5)")
plt.axis("square")
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.title("Extension of Receiver Operating Characteristic\nto One-vs-Rest multiclass")
plt.legend()
if save_plot:
plt.savefig(self.plot_path + '/' + plot_name + '.png')
if show_plot:
plt.show()
plt.close()