|
| 1 | +from Model import Date2Vec |
| 2 | +from Data import NextDateDataset, TimeDateDataset |
| 3 | +import torch |
| 4 | +from torch.utils.data import DataLoader |
| 5 | +from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error |
| 6 | +from tensorboard_logger import configure, log_value |
| 7 | +import os |
| 8 | + |
| 9 | +class NextDateExperiment: |
| 10 | + def __init__(self, model, act, optim='adam', lr=0.001, batch_size=256, num_epoch=50, cuda=False): |
| 11 | + self.model = model |
| 12 | + self.optim = optim |
| 13 | + self.lr = lr |
| 14 | + self.batch_size = 128 |
| 15 | + self.num_epoch = num_epoch |
| 16 | + self.cuda = cuda |
| 17 | + self.act = act |
| 18 | + |
| 19 | + with open('dates.txt', 'r') as f: |
| 20 | + full = f.readlines() |
| 21 | + train = full[len(full)//3: 2*len(full)//3] |
| 22 | + test_prev = full[:len(full)//3] |
| 23 | + test_after = full[2*len(full)//3:] |
| 24 | + |
| 25 | + self.train_dataset = NextDateDataset(train) |
| 26 | + self.test_prev_dataset = NextDateDataset(test_prev) |
| 27 | + self.test_after_dataset = NextDateDataset(test_after) |
| 28 | + |
| 29 | + def train(self): |
| 30 | + loss_fn1 = torch.nn.L1Loss() |
| 31 | + loss_fn2 = torch.nn.MSELoss() |
| 32 | + loss_fn = lambda y_true, y_pred: loss_fn1(y_true, y_pred) + loss_fn2(y_true, y_pred) |
| 33 | + |
| 34 | + if self.cuda: |
| 35 | + loss_fn = loss_fn.cuda() |
| 36 | + self.model = self.model.cuda() |
| 37 | + |
| 38 | + if self.optim == 'adam': |
| 39 | + optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr) |
| 40 | + elif self.optim == 'sgd_momentum': |
| 41 | + optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) |
| 42 | + else: |
| 43 | + optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9, nesterov=True) |
| 44 | + |
| 45 | + train_dataloader = DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 46 | + test1_dataloader = DataLoader(self.test_prev_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 47 | + test2_dataloader = DataLoader(self.test_after_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 48 | + |
| 49 | + |
| 50 | + avg_best = 1000000 |
| 51 | + avg_loss = 0 |
| 52 | + step = 0 |
| 53 | + |
| 54 | + for ep in range(self.num_epoch): |
| 55 | + for (x, y), (x_prev, y_prev), (x_after, y_after) in zip(train_dataloader, test1_dataloader, test2_dataloader): |
| 56 | + if self.cuda: |
| 57 | + x = x.cuda() |
| 58 | + y = y.cuda() |
| 59 | + x_prev = x_prev.cuda() |
| 60 | + y_prev = y_prev.cuda() |
| 61 | + x_after = x_after.cuda() |
| 62 | + y_after = y_after.cuda() |
| 63 | + |
| 64 | + |
| 65 | + optimizer.zero_grad() |
| 66 | + |
| 67 | + y_pred = self.model(x) |
| 68 | + loss = loss_fn(y_pred, y) |
| 69 | + |
| 70 | + loss.backward() |
| 71 | + optimizer.step() |
| 72 | + |
| 73 | + with torch.no_grad(): |
| 74 | + y_pred_prev = self.model(x_prev) |
| 75 | + r2_prev = r2_score(y_prev.cpu().numpy(), y_pred_prev.cpu().numpy()) |
| 76 | + mae_prev = mean_absolute_error(y_prev.cpu().numpy(), y_pred_prev.cpu().numpy()) |
| 77 | + mse_prev = mean_squared_error(y_prev.cpu().numpy(), y_pred_prev.cpu().numpy()) |
| 78 | + |
| 79 | + y_pred_after = self.model(x_after) |
| 80 | + r2_after = r2_score(y_after.cpu().numpy(), y_pred_after.cpu().numpy()) |
| 81 | + mae_after = mean_absolute_error(y_after.cpu().numpy(), y_pred_after.cpu().numpy()) |
| 82 | + mse_after = mean_squared_error(y_after.cpu().numpy(), y_pred_after.cpu().numpy()) |
| 83 | + |
| 84 | + print("ep:{}, batch:{}, train_loss:{:.4f}, test1_mse:{:.4f}, test2_mse:{:.4f}".format( |
| 85 | + ep, |
| 86 | + step, |
| 87 | + loss.item(), |
| 88 | + mse_prev, |
| 89 | + mse_after |
| 90 | + )) |
| 91 | + |
| 92 | + log_value('train_loss', loss.item(), step) |
| 93 | + log_value('test1_r2', r2_prev, step) |
| 94 | + log_value('test1_mse', mse_prev, step) |
| 95 | + log_value('test1_mae', mae_prev, step) |
| 96 | + log_value('test2_r2', r2_after, step) |
| 97 | + log_value('test2_mse', mse_after, step) |
| 98 | + log_value('test2_mae', mae_after, step) |
| 99 | + |
| 100 | + avg_loss = (loss.item() + mse_prev + mse_after) / 3 |
| 101 | + if avg_loss < avg_best: |
| 102 | + avg_best = avg_loss |
| 103 | + torch.save(self.model, "./models/{}/nextdate_{}_{}.pth".format(self.act,step, avg_best)) |
| 104 | + |
| 105 | + step += 1 |
| 106 | + |
| 107 | + def test(self): |
| 108 | + test1_dataloader = DataLoader(self.test_prev_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 109 | + test2_dataloader = DataLoader(self.test_after_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 110 | + |
| 111 | + to_int = lambda dt: list(map(int, dt)) |
| 112 | + |
| 113 | + total_pred_test1 = len(self.test_prev_dataset) |
| 114 | + total_pred_test2 = len(self.test_after_dataset) |
| 115 | + |
| 116 | + correct_pred_prev = 0 |
| 117 | + correct_pred_after = 0 |
| 118 | + |
| 119 | + def count_correct(ypred, ytrue): |
| 120 | + c = 0 |
| 121 | + for p, t in zip(ypred, ytrue): |
| 122 | + for pi, ti in zip(to_int(p), to_int(t)): |
| 123 | + if pi == ti: |
| 124 | + c += 1 |
| 125 | + return c |
| 126 | + |
| 127 | + for (x_prev, y_prev), (x_after, y_after) in zip(test1_dataloader, test2_dataloader): |
| 128 | + with torch.no_grad(): |
| 129 | + y_pred_prev = self.model(x_prev).cpu().numpy().tolist() |
| 130 | + correct_pred_prev += count_correct(y_pred_prev, y_prev.cpu().numpy().tolist()) |
| 131 | + |
| 132 | + y_pred_after = self.model(x_after) |
| 133 | + correct_pred_after += count_correct(y_pred_after, y_after.cpu().numpy().tolist()) |
| 134 | + |
| 135 | + prev_acc = correct_pred_prev / total_pred_test1 |
| 136 | + after_acc = correct_pred_after / total_pred_test2 |
| 137 | + |
| 138 | + return prev_acc, after_acc |
| 139 | + |
| 140 | +class Date2VecExperiment: |
| 141 | + def __init__(self, model, act, optim='adam', lr=0.001, batch_size=256, num_epoch=50, cuda=False): |
| 142 | + self.model = model |
| 143 | + if cuda: |
| 144 | + self.model = model.cuda() |
| 145 | + self.optim = optim |
| 146 | + self.lr = lr |
| 147 | + self.batch_size = batch_size |
| 148 | + self.num_epoch = num_epoch |
| 149 | + self.cuda = cuda |
| 150 | + self.act = act |
| 151 | + |
| 152 | + with open('date_time.txt', 'r') as f: |
| 153 | + full = f.readlines() |
| 154 | + train = full[len(full)//3: 2*len(full)//3] |
| 155 | + test_prev = full[:len(full)//3] |
| 156 | + test_after = full[2*len(full)//3:] |
| 157 | + |
| 158 | + self.train_dataset = TimeDateDataset(train) |
| 159 | + self.test_prev_dataset = TimeDateDataset(test_prev) |
| 160 | + self.test_after_dataset = TimeDateDataset(test_after) |
| 161 | + |
| 162 | + def train(self): |
| 163 | + #loss_fn1 = torch.nn.L1Loss() |
| 164 | + loss_fn = torch.nn.MSELoss() |
| 165 | + #loss_fn = lambda y_true, y_pred: loss_fn1(y_true, y_pred) + loss_fn2(y_true, y_pred) |
| 166 | + |
| 167 | + if self.cuda: |
| 168 | + loss_fn = loss_fn.cuda() |
| 169 | + self.model = self.model.cuda() |
| 170 | + |
| 171 | + if self.optim == 'adam': |
| 172 | + optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr) |
| 173 | + elif self.optim == 'sgd_momentum': |
| 174 | + optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9) |
| 175 | + else: |
| 176 | + optimizer = torch.optim.SGD(self.model.parameters(), lr=self.lr, momentum=0.9, nesterov=True) |
| 177 | + |
| 178 | + train_dataloader = DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 179 | + test1_dataloader = DataLoader(self.test_prev_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 180 | + test2_dataloader = DataLoader(self.test_after_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 181 | + |
| 182 | + |
| 183 | + avg_best = 1000000000000000 |
| 184 | + avg_loss = 0 |
| 185 | + step = 0 |
| 186 | + |
| 187 | + for ep in range(self.num_epoch): |
| 188 | + for (x, y), (x_prev, y_prev), (x_after, y_after) in zip(train_dataloader, test1_dataloader, test2_dataloader): |
| 189 | + if self.cuda: |
| 190 | + x = x.cuda() |
| 191 | + y = y.cuda() |
| 192 | + x_prev = x_prev.cuda() |
| 193 | + y_prev = y_prev.cuda() |
| 194 | + x_after = x_after.cuda() |
| 195 | + y_after = y_after.cuda() |
| 196 | + |
| 197 | + optimizer.zero_grad() |
| 198 | + |
| 199 | + y_pred = self.model(x) |
| 200 | + loss = loss_fn(y_pred, y) |
| 201 | + |
| 202 | + loss.backward() |
| 203 | + optimizer.step() |
| 204 | + |
| 205 | + with torch.no_grad(): |
| 206 | + y_pred_prev = self.model(x_prev) |
| 207 | + r2_prev = r2_score(y_prev.cpu().numpy(), y_pred_prev.cpu().numpy()) |
| 208 | + mae_prev = mean_absolute_error(y_prev.cpu().numpy(), y_pred_prev.cpu().numpy()) |
| 209 | + mse_prev = mean_squared_error(y_prev.cpu().numpy(), y_pred_prev.cpu().numpy()) |
| 210 | + |
| 211 | + y_pred_after = self.model(x_after) |
| 212 | + r2_after = r2_score(y_after.cpu().numpy(), y_pred_after.cpu().numpy()) |
| 213 | + mae_after = mean_absolute_error(y_after.cpu().numpy(), y_pred_after.cpu().numpy()) |
| 214 | + mse_after = mean_squared_error(y_after.cpu().numpy(), y_pred_after.cpu().numpy()) |
| 215 | + |
| 216 | + print("ep:{}, batch:{}, train_loss:{:.4f}, test1_mse:{:.4f}, test2_mse:{:.4f}".format( |
| 217 | + ep, |
| 218 | + step, |
| 219 | + loss.item(), |
| 220 | + mse_prev, |
| 221 | + mse_after |
| 222 | + )) |
| 223 | + |
| 224 | + log_value('train_loss', loss.item(), step) |
| 225 | + log_value('test1_r2', r2_prev, step) |
| 226 | + log_value('test1_mse', mse_prev, step) |
| 227 | + log_value('test1_mae', mae_prev, step) |
| 228 | + log_value('test2_r2', r2_after, step) |
| 229 | + log_value('test2_mse', mse_after, step) |
| 230 | + log_value('test2_mae', mae_after, step) |
| 231 | + |
| 232 | + avg_loss = (loss.item() + avg_loss) / 2 |
| 233 | + if avg_loss < avg_best: |
| 234 | + avg_best = avg_loss |
| 235 | + torch.save(self.model, "./models/d2v_{}/d2v_{}_{}.pth".format(self.act,step, avg_best)) |
| 236 | + |
| 237 | + step += 1 |
| 238 | + |
| 239 | + def test(self): |
| 240 | + test1_dataloader = DataLoader(self.test_prev_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 241 | + test2_dataloader = DataLoader(self.test_after_dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=self.cuda) |
| 242 | + |
| 243 | + to_int = lambda dt: list(map(int, dt)) |
| 244 | + |
| 245 | + total_pred_test1 = len(self.test_prev_dataset) |
| 246 | + total_pred_test2 = len(self.test_after_dataset) |
| 247 | + |
| 248 | + correct_pred_prev = 0 |
| 249 | + correct_pred_after = 0 |
| 250 | + |
| 251 | + def count_correct(ypred, ytrue): |
| 252 | + c = 0 |
| 253 | + for p, t in zip(ypred, ytrue): |
| 254 | + for pi, ti in zip(to_int(p), to_int(t)): |
| 255 | + if pi == ti: |
| 256 | + c += 1 |
| 257 | + return c |
| 258 | + |
| 259 | + for (x_prev, y_prev), (x_after, y_after) in zip(test1_dataloader, test2_dataloader): |
| 260 | + with torch.no_grad(): |
| 261 | + y_pred_prev = self.model(x_prev).cpu().numpy().tolist() |
| 262 | + correct_pred_prev += count_correct(y_pred_prev, y_prev.cpu().numpy().tolist()) |
| 263 | + |
| 264 | + y_pred_after = self.model(x_after) |
| 265 | + correct_pred_after += count_correct(y_pred_after, y_after.cpu().numpy().tolist()) |
| 266 | + |
| 267 | + prev_acc = correct_pred_prev / total_pred_test1 |
| 268 | + after_acc = correct_pred_after / total_pred_test2 |
| 269 | + |
| 270 | + return prev_acc, after_acc |
| 271 | +if __name__ == "__main__": |
| 272 | + act = 'cos' |
| 273 | + optim = 'adam' |
| 274 | + os.system("mkdir ./models/d2v_{}".format(act)) |
| 275 | + configure("logs/d2v_{}".format(act)) |
| 276 | + |
| 277 | + m = Date2Vec(k=64, act=act) |
| 278 | + #m = torch.load("models/sin/nextdate_11147_23.02417500813802.pth") |
| 279 | + exp = Date2VecExperiment(m, act, lr=0.001, cuda=True, optim=optim) |
| 280 | + exp.train() |
| 281 | + #test1_acc, test2_acc = exp.test() |
| 282 | + #print("test1 accuracy:{}, test2 accuracy:{}".format(test1_acc, test2_acc)) |
0 commit comments