Skip to content

omatcopy much slower than copy in OMP loop #4902

Open
@david-cortes

Description

@david-cortes

I'm trying to use cblas_domatcopy to transpose large row-major matrices.

I'm finding that the function is slower than a simple loop of cblas_dcopy calls parallelized with OpenMP (with number of threads set to number of logical cores, otherwise OMP loop is much slower).

Function cblas_domatcopy appears to be especially slower when the inputs have more columns than rows - in this sense, in a dcopy loop, there's also a large timing difference according to whether the copies are by rows of the input or of the output, and I'm guessing that perhaps omatcopy always follows the same order.

(code is provided at the end of this post)

  • Timings in seconds on an intel 12700H, average of 7 runs:

    • Input size: 100,000 x 5x000
      • OpenBLAS cblas_domatcopy: 3.12
      • OpenMP dcopy loop: 2.38
      • MKL MKL_Domatcopy: 1.26
    • Input size: 5,000 x 100,000
      • OpenBLAS cblas_domatcopy: 3.74
      • OpenMP dcopy loop: 1.23
      • MKL MKL_Domatcopy: 1.27
  • Timings in seconds on an amd ryzen 7840HS, average of 7 runs:

    • Input size: 100,000 x 5x000
      • OpenBLAS cblas_domatcopy: 0.922
      • OpenMP dcopy loop: 0.586
      • MKL MKL_Domatcopy: 0.560
    • Input size: 5,000 x 100,000
      • OpenBLAS cblas_domatcopy: 1.12
      • OpenMP dcopy loop: 0.402
      • MKL MKL_Domatcopy: 0.516

OpenBLAS version: 0.3.26, OpenMP variant.

Code that I'm using for the OMP dcopy loop:

void transpose_mat(const double *A, const int nrows, const int ncols, double *B, int nthreads)
{
    if (nrows >= ncols)
    {
        #pragma omp parallel for schedule(static) num_threads(nthreads)
        for (int row = 0; row < nrows; row++)
            cblas_dcopy(ncols, A + (size_t)row*(size_t)ncols, 1, B + row, nrows);
    }
    
    else
    {
        #pragma omp parallel for schedule(static) num_threads(nthreads
        for (int col = 0; col < ncols; col++)
            cblas_dcopy(nrows, A + col, ncols, B + (size_t)col*(size_t)nrows, 1);
    }
}

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions