-
Notifications
You must be signed in to change notification settings - Fork 55
/
utils.py
81 lines (68 loc) · 2.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
# from torch._six import inf
from math import inf
import logging
from termcolor import colored
import sys
import os
import time
@torch.no_grad()
def ampscaler_get_grad_norm(parameters, norm_type: float = 2.0) -> torch.Tensor:
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
if norm_type == inf:
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
else:
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(),
norm_type).to(device) for p in parameters]), norm_type)
return total_norm
class NativeScalerWithGradNormCount:
state_dict_key = "amp_scaler"
def __init__(self):
self._scaler = torch.cuda.amp.GradScaler()
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True,retain_graph=False):
self._scaler.scale(loss).backward(create_graph=create_graph, retain_graph=retain_graph)
if update_grad:
if clip_grad is not None:
assert parameters is not None
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
else:
self._scaler.unscale_(optimizer)
norm = ampscaler_get_grad_norm(parameters)
self._scaler.step(optimizer)
self._scaler.update()
else:
norm = None
return norm
def state_dict(self):
return self._scaler.state_dict()
def load_state_dict(self, state_dict):
self._scaler.load_state_dict(state_dict)
def create_logger(output_dir, dist_rank=0, name=''):
# create logger
logger = logging.getLogger(name)
logger.setLevel(logging.INFO)
logger.propagate = False
# create formatter
fmt = '[%(asctime)s %(name)s] (%(filename)s %(lineno)d): %(levelname)s %(message)s'
color_fmt = colored('[%(asctime)s %(name)s]', 'green') + \
colored('(%(filename)s %(lineno)d)', 'yellow') + ': %(levelname)s %(message)s'
# create console handlers for master process
if dist_rank == 0:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(
logging.Formatter(fmt=color_fmt, datefmt='%Y-%m-%d %H:%M:%S'))
logger.addHandler(console_handler)
# create file handlers
file_handler = logging.FileHandler(os.path.join(output_dir, f'log_rank{dist_rank}_{int(time.time())}.txt'), mode='a')
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(logging.Formatter(fmt=fmt, datefmt='%Y-%m-%d %H:%M:%S'))
logger.addHandler(file_handler)
return logger