-
Notifications
You must be signed in to change notification settings - Fork 489
/
gradio_app.py
319 lines (252 loc) · 11.4 KB
/
gradio_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import os
import gradio as gr
import torch
import numpy as np
import imageio
from PIL import Image
import uuid
from draggan import utils
from draggan.draggan import drag_gan
from draggan import draggan as draggan
device = 'cuda'
SIZE_TO_CLICK_SIZE = {
1024: 8,
512: 5,
256: 2
}
CKPT_SIZE = {
'stylegan2/stylegan2-ffhq-config-f.pkl': 1024,
'stylegan2/stylegan2-cat-config-f.pkl': 256,
'stylegan2/stylegan2-church-config-f.pkl': 256,
'stylegan2/stylegan2-horse-config-f.pkl': 256,
'ada/ffhq.pkl': 1024,
'ada/afhqcat.pkl': 512,
'ada/afhqdog.pkl': 512,
'ada/afhqwild.pkl': 512,
'ada/brecahad.pkl': 512,
'ada/metfaces.pkl': 512,
'human/stylegan_human_v2_512.pkl': 512,
'human/stylegan_human_v2_1024.pkl': 1024,
'self_distill/bicycles_256_pytorch.pkl': 256,
'self_distill/dogs_1024_pytorch.pkl': 1024,
'self_distill/elephants_512_pytorch.pkl': 512,
'self_distill/giraffes_512_pytorch.pkl': 512,
'self_distill/horses_256_pytorch.pkl': 256,
'self_distill/lions_512_pytorch.pkl': 512,
'self_distill/parrots_512_pytorch.pkl': 512,
}
DEFAULT_CKPT = 'ada/afhqcat.pkl'
def to_image(tensor):
tensor = tensor.squeeze(0).permute(1, 2, 0)
arr = tensor.detach().cpu().numpy()
arr = (arr - arr.min()) / (arr.max() - arr.min())
arr = arr * 255
return arr.astype('uint8')
def add_points_to_image(image, points, size=5):
image = utils.draw_handle_target_points(image, points['handle'], points['target'], size)
return image
def on_click(image, target_point, points, size, evt: gr.SelectData):
if target_point:
points['target'].append([evt.index[1], evt.index[0]])
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return image, not target_point
points['handle'].append([evt.index[1], evt.index[0]])
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return image, not target_point
def on_drag(model, points, max_iters, state, size, mask, lr_box):
if len(points['handle']) == 0:
raise gr.Error('You must select at least one handle point and target point.')
if len(points['handle']) != len(points['target']):
raise gr.Error('You have uncompleted handle points, try to selct a target point or undo the handle point.')
max_iters = int(max_iters)
W = state['W']
handle_points = [torch.tensor(p, device=device).float() for p in points['handle']]
target_points = [torch.tensor(p, device=device).float() for p in points['target']]
if mask.get('mask') is not None:
mask = Image.fromarray(mask['mask']).convert('L')
mask = np.array(mask) == 255
mask = torch.from_numpy(mask).float().to(device)
mask = mask.unsqueeze(0).unsqueeze(0)
else:
mask = None
step = 0
for image, W, handle_points in drag_gan(W, model['G'],
handle_points, target_points, mask,
max_iters=max_iters, lr=lr_box):
points['handle'] = [p.cpu().numpy().astype('int') for p in handle_points]
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
state['history'].append(image)
step += 1
yield image, state, step
def on_reset(points, image, state):
return {'target': [], 'handle': []}, state['img'], False
def on_undo(points, image, state, size):
image = state['img']
if len(points['target']) < len(points['handle']):
points['handle'] = points['handle'][:-1]
else:
points['handle'] = points['handle'][:-1]
points['target'] = points['target'][:-1]
image = add_points_to_image(image, points, size=SIZE_TO_CLICK_SIZE[size])
return points, image, False
def on_change_model(selected, model):
size = CKPT_SIZE[selected]
G = draggan.load_model(utils.get_path(selected), device=device)
model = {'G': G}
W = draggan.generate_W(
G,
seed=int(1),
device=device,
truncation_psi=0.8,
truncation_cutoff=8,
)
img, _ = draggan.generate_image(W, G, device=device)
state = {
'W': W,
'img': img,
'history': []
}
return model, state, img, img, size
def on_new_image(model, seed):
G = model['G']
W = draggan.generate_W(
G,
seed=int(seed),
device=device,
truncation_psi=0.8,
truncation_cutoff=8,
)
img, _ = draggan.generate_image(W, G, device=device)
state = {
'W': W,
'img': img,
'history': []
}
points = {'target': [], 'handle': []}
target_point = False
return img, img, state, points, target_point
def on_max_iter_change(max_iters):
return gr.update(maximum=max_iters)
def on_save_files(image, state):
os.makedirs('draggan_tmp', exist_ok=True)
image_name = f'draggan_tmp/image_{uuid.uuid4()}.png'
video_name = f'draggan_tmp/video_{uuid.uuid4()}.mp4'
imageio.imsave(image_name, image)
imageio.mimsave(video_name, state['history'])
return [image_name, video_name]
def on_show_save():
return gr.update(visible=True)
def on_image_change(model, image_size, image):
image = Image.fromarray(image)
result = inverse_image(
model.g_ema,
image,
image_size=image_size
)
result['history'] = []
image = to_image(result['sample'])
points = {'target': [], 'handle': []}
target_point = False
return image, image, result, points, target_point
def on_mask_change(mask):
return mask['image']
def on_select_mask_tab(state):
img = to_image(state['sample'])
return img
def main():
torch.cuda.manual_seed(25)
with gr.Blocks() as demo:
gr.Markdown(
"""
# DragGAN
Unofficial implementation of [Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold](https://vcai.mpi-inf.mpg.de/projects/DragGAN/)
[Our Implementation](https://github.com/Zeqiang-Lai/DragGAN) | [Official Implementation](https://github.com/XingangPan/DragGAN) (Not released yet)
## Tutorial
1. (Optional) Draw a mask indicate the movable region.
2. Setup a least one pair of handle point and target point.
3. Click "Drag it".
## Hints
- Handle points (Blue): the point you want to drag.
- Target points (Red): the destination you want to drag towards to.
## Primary Support of Custom Image.
- We now support dragging user uploaded image by GAN inversion.
- **Please upload your image at `Setup Handle Points` pannel.** Upload it from `Draw a Mask` would cause errors for now.
- Due to the limitation of GAN inversion,
- You might wait roughly 1 minute to see the GAN version of the uploaded image.
- The shown image might be slightly difference from the uploaded one.
- It could also fail to invert the uploaded image and generate very poor results.
- Idealy, you should choose the closest model of the uploaded image. For example, choose `stylegan2-ffhq-config-f.pkl` for human face. `stylegan2-cat-config-f.pkl` for cat.
> Please fire an issue if you have encounted any problem. Also don't forgot to give a star to the [Official Repo](https://github.com/XingangPan/DragGAN), [our project](https://github.com/Zeqiang-Lai/DragGAN) could not exist without it.
""",
)
G = draggan.load_model(utils.get_path(DEFAULT_CKPT), device=device)
model = gr.State({'G': G})
W = draggan.generate_W(
G,
seed=int(1),
device=device,
truncation_psi=0.8,
truncation_cutoff=8,
)
img, F0 = draggan.generate_image(W, G, device=device)
state = gr.State({
'W': W,
'img': img,
'history': []
})
points = gr.State({'target': [], 'handle': []})
size = gr.State(CKPT_SIZE[DEFAULT_CKPT])
target_point = gr.State(False)
with gr.Row():
with gr.Column(scale=0.3):
with gr.Accordion("Model"):
model_dropdown = gr.Dropdown(choices=list(CKPT_SIZE.keys()), value=DEFAULT_CKPT,
label='StyleGAN2 model')
seed = gr.Number(value=1, label='Seed', precision=0)
new_btn = gr.Button('New Image')
with gr.Accordion('Drag'):
with gr.Row():
lr_box = gr.Number(value=2e-3, label='Learning Rate')
max_iters = gr.Slider(1, 500, 20, step=1, label='Max Iterations')
with gr.Row():
with gr.Column(min_width=100):
reset_btn = gr.Button('Reset All')
with gr.Column(min_width=100):
undo_btn = gr.Button('Undo Last')
with gr.Row():
btn = gr.Button('Drag it', variant='primary')
with gr.Accordion('Save', visible=False) as save_panel:
files = gr.Files(value=[])
progress = gr.Slider(value=0, maximum=20, label='Progress', interactive=False)
with gr.Column():
with gr.Tabs():
with gr.Tab('Setup Handle Points', id='input'):
image = gr.Image(img).style(height=512, width=512)
with gr.Tab('Draw a Mask', id='mask') as masktab:
mask = gr.ImageMask(img, label='Mask').style(height=512, width=512)
image.select(on_click, [image, target_point, points, size], [image, target_point])
image.upload(on_image_change, [model, size, image], [image, mask, state, points, target_point])
mask.upload(on_mask_change, [mask], [image])
btn.click(on_drag, inputs=[model, points, max_iters, state, size, mask, lr_box], outputs=[image, state, progress]).then(
on_show_save, outputs=save_panel).then(
on_save_files, inputs=[image, state], outputs=[files]
)
reset_btn.click(on_reset, inputs=[points, image, state], outputs=[points, image, target_point])
undo_btn.click(on_undo, inputs=[points, image, state, size], outputs=[points, image, target_point])
model_dropdown.change(on_change_model, inputs=[model_dropdown, model], outputs=[model, state, image, mask, size])
new_btn.click(on_new_image, inputs=[model, seed], outputs=[image, mask, state, points, target_point])
max_iters.change(on_max_iter_change, inputs=max_iters, outputs=progress)
masktab.select(lambda: gr.update(value=None), outputs=[mask]).then(on_select_mask_tab, inputs=[state], outputs=[mask])
return demo
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--device', default='cuda')
parser.add_argument('--share', action='store_true')
parser.add_argument('-p', '--port', type=int, default=None)
parser.add_argument('--ip', default=None)
args = parser.parse_args()
device = args.device
demo = main()
print('Successfully loaded, starting gradio demo')
demo.queue(concurrency_count=1, max_size=20).launch(share=args.share, server_name=args.ip, server_port=args.port)