Skip to content

Latest commit

 

History

History
150 lines (111 loc) · 6.55 KB

README.md

File metadata and controls

150 lines (111 loc) · 6.55 KB

agibot_world

Static Badge Static Badge License

Key Features 🔑

  • 1 million+ trajectories from 100 robots.
  • 100+ 1:1 replicated real-life scenarios across 5 target domains.
  • Cutting-edge hardware: visual tactile sensors / 6-DoF Dexterous hand / mobile dual-arm robots
  • Wide-spectrum versatile challenging tasks
Contact-rich Manipulation

Contact-rich Manipulation

Long-horizon Planning

Long-horizon Planning

Multi-robot Collaboration

Multi-robot Collaboration

News📰

  • [2025/01/03] Agibot World Alpha Sample Dataset released.
  • [2024/12/30] 🤖 Agibot World Alpha released.

Table of Contents

  1. Key Features
  2. At a Quick Glance
  3. Getting Started
  4. TODO List
  5. License and Citation

At a Quick Glance⬇️

Follow the steps below to quickly explore and get an overview of AgiBot World with our sample dataset (~7GB).

# Installation
conda create -n agibotworld python=3.10 -y
conda activate agibotworld
git clone https://github.com/huggingface/lerobot.git
cd lerobot
pip install -e .
pip install matplotlib
cd ..
git clone https://github.com/OpenDriveLab/AgiBot-World.git
cd AgiBot-World

# Download the sample dataset (~7GB) from Hugging Face. Replace <your_access_token> with your Hugging Face Access Token. You can generate an access token by following the instructions in the Hugging Face documentation from https://huggingface.co/docs/hub/security-tokens
mkdir data
cd data
curl -L -o sample_dataset.tar -H "Authorization: Bearer <your_access_token>" https://huggingface.co/datasets/agibot-world/AgiBotWorld-Alpha/resolve/main/sample_dataset.tar
tar -xvf sample_dataset.tar

# Convert the sample dataset to LeRobot dataset format and visualize
cd ..
python scripts/convert_to_lerobot.py --src_path ./data/sample_dataset --task_id 390 --tgt_path ./data/sample_lerobot
python scripts/visualize_dataset.py --task-id 390 --dataset-path ./data/sample_lerobot

Getting started 🔥

Installation

Download our source code:

git clone https://github.com/OpenDriveLab/AgiBot-World.git
cd AgiBot-World

Our project is built upon the lerobot library (dataset v2.0), please follow their installation instructions.

How to Get Started with Our AgiBot World Data

Download data from our HuggingFace page.

huggingface-cli download --resume-download --repo-type dataset agibot-world/AgiBotWorld-Alpha --local-dir ./AgiBotWorld-Alpha

Convert the data to LeRobot Dataset format.

python scripts/convert_to_lerobot.py --src_path /path/to/agibotworld/alpha --task_id 390 --tgt_path /path/to/save/lerobot

Visualize Datasets

We adapt and extend the dataset visualization script from LeRobot Project

python scripts/visualize_dataset.py --task-id 390 --dataset-path /path/to/lerobot/format/dataset

It will open rerun.io and display the camera streams, robot states and actions, like this:

Policy Training Quickstart

Leveraging the simplicity of LeRobot Dataset, we provide a user-friendly Jupyter Notebook for training diffusion policy on AgiBot World Dataset.

TODO List 📅

  • AgiBot World Alpha
  • AgiBot World Beta (expected Q1 2025)
    • ~1,000,000 trajectories of high-quality robot data
    • ACT、DP3、OpenVLA and some other baseline models
  • AgiBot World Colosseum (expected 2025)
    • A comprehensive platform with toolkits including teleoperation, training and inference.
  • 2025 AgiBot World Challenge (expected 2025)

License and Citation📄

All the data and code within this repo are under CC BY-NC-SA 4.0. Please consider citing our project if it helps your research.

@misc{contributors2024agibotworldrepo,
  title={AgiBot World Colosseum},
  author={AgiBot World Colosseum contributors},
  howpublished={\url{https://github.com/OpenDriveLab/AgiBot-World}},
  year={2024}
}