-
Notifications
You must be signed in to change notification settings - Fork 38
/
Copy pathlenet.py
63 lines (52 loc) · 1.72 KB
/
lenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# coding=utf-8
import numpy as np
import oneflow as flow
import oneflow.nn as nn
# define LeNet module
class LeNet5(nn.Module):
def __init__(self, n_classes):
super(LeNet5, self).__init__()
self.feature_extractor = nn.Sequential(
nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1),
nn.Tanh(),
nn.AvgPool2d(kernel_size=2),
nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5, stride=1),
nn.Tanh(),
)
self.classifier = nn.Sequential(
nn.Linear(in_features=120, out_features=84),
nn.Tanh(),
nn.Linear(in_features=84, out_features=n_classes),
)
def forward(self, x):
x = self.feature_extractor(x)
x = flow.flatten(x, 1)
logits = self.classifier(x)
probs = flow.softmax(logits, dim=1)
return logits, probs
# enable eager mode
# init model
model = LeNet5(10)
criterion = nn.CrossEntropyLoss()
# enable module to use cuda
model.to("cuda")
criterion.to("cuda")
learning_rate = 0.005
optimizer = flow.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
# generate random data and label
train_data = flow.Tensor(
np.random.uniform(size=(30, 1, 32, 32)).astype(np.float32), device="cuda"
)
train_label = flow.Tensor(
np.random.uniform(size=(30)).astype(np.int32), dtype=flow.int32, device="cuda"
)
# run forward, backward and update parameters
logits, probs = model(train_data)
loss = criterion(logits, train_label)
loss.backward()
optimizer.step()
optimizer.zero_grad()
print(loss.numpy())