-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathresnext_model.py
executable file
·275 lines (234 loc) · 11.1 KB
/
resnext_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import oneflow as flow
import collections
__all__ = ['ResNeXt', 'resnext18', 'resnext34', 'resnext50', 'resnext101',
'resnext152']
basic_block_expansion = 1
bottle_neck_expansion = 4
def _get_regularizer(model_name):
#all decay
return flow.regularizers.l2(0.0001)
def _get_initializer(model_name):
if model_name == "weight":
return flow.variance_scaling_initializer(2.0, mode="fan_out", distribution="random_normal", data_format="NCHW")
elif model_name == "bias":
return flow.zeros_initializer()
elif model_name == "gamma":
return flow.ones_initializer()
elif model_name == "beta":
return flow.zeros_initializer()
elif model_name == "dense_weight":
return flow.variance_scaling_initializer(1/3, mode="fan_in", distribution="random_uniform")
elif model_name == "dense_bias":
return flow.random_uniform_initializer(0, 0.01)
def _conv2d(
inputs,
filters,
kernel_size,
strides=1,
padding=[[0, 0], [0, 0], [0, 0], [0, 0]],
groups=1,
use_bias=False,
trainable=True,
name=None
):
return flow.layers.conv2d(
inputs, filters, kernel_size, strides, padding,
data_format="NCHW", dilation_rate=1, groups=groups,
activation=None, use_bias=use_bias,
kernel_initializer=_get_initializer("weight"),
bias_initializer=_get_initializer("bias"),
kernel_regularizer=_get_regularizer("weight"), bias_regularizer=_get_regularizer("bias"),
trainable=True, name=name, weight_name=name+"-weight",
bias_name=name+"-bias")
def conv3x3(in_tensor, filters, strides=1, groups=1, trainable=True, name=""):
return _conv2d(in_tensor, filters=filters, kernel_size=3,
strides=strides, padding=[[0, 0], [0, 0], [strides, strides], [strides, strides]], groups=groups, use_bias=False,
trainable=trainable, name=name)
def _batch_norm(inputs, trainable=True, training=True, name=None):
return flow.layers.batch_normalization(
inputs=inputs,
axis=1,
momentum=0.9,
epsilon=1e-5,
center=True,
scale=True,
beta_initializer=_get_initializer("beta"),
gamma_initializer=_get_initializer("gamma"),
beta_regularizer=_get_regularizer("beta"),
gamma_regularizer=_get_regularizer("gamma"),
moving_mean_initializer=None,
moving_variance_initializer=None,
trainable=trainable,
training=training,
name=name
)
def basic_block(inputs, filters, strides=1, downsample=None, num_group=32,
trainable=True, training=True, layer_block=""):
residual = inputs
conv1 = conv3x3(inputs, filters*2, strides, trainable=trainable, name=layer_block+"conv1")
bn1 = _batch_norm(conv1, trainable=trainable, training=training, name=layer_block+"bn1")
relu = flow.nn.relu(bn1, name=layer_block+"relu1")
conv2 = conv3x3(relu, filters*2, groups=num_group, trainable=trainable,
name=layer_block+"conv2")
bn2 = _batch_norm(conv2, trainable=trainable, training=training, name=layer_block+"bn2")
if downsample is True:
residual = _conv2d(inputs, filters * basic_block_expansion,
kernel_size=1, strides=strides, use_bias=False,
trainable=trainable, name=layer_block+"downsample-0")
residual = _batch_norm(residual, trainable, training=training, name=layer_block+"downsampe-1")
out = flow.math.add(bn2, residual)
out = flow.nn.relu(out)
return out
def bottle_neck(inputs, filters, strides,
downsample=None, num_group=32, trainable=True, training=True, layer_block=""):
residual = inputs
conv1 = _conv2d(inputs, filters*2, kernel_size=1, trainable=trainable, name=layer_block+"conv1")
bn1 = _batch_norm(conv1, trainable=trainable, training=training, name=layer_block+"bn1")
relu1 = flow.nn.relu(bn1, name=layer_block+"relu1")
conv2 = _conv2d(relu1, filters*2, kernel_size=3, strides=strides,
padding=[[0, 0], [0, 0], [1, 1], [1, 1]], use_bias=False,
groups=num_group, trainable=trainable,
name=layer_block+"conv2")
bn2 = _batch_norm(conv2, trainable=trainable, training=training, name=layer_block+"bn2")
relu2 = flow.nn.relu(bn2, name=layer_block+"relu2")
conv3 = _conv2d(relu2, filters*4, kernel_size=1, padding="VALID",
use_bias=False, trainable=trainable, name=layer_block+"conv3")
bn3 = _batch_norm(conv3, training=training, name=layer_block+"bn3") # pass
if downsample is True:
residual = _conv2d(inputs, filters * bottle_neck_expansion,
kernel_size=1, strides=strides, use_bias=False,
trainable=trainable,
name=layer_block+"downsample-0")
residual = _batch_norm(residual, trainable=trainable,
training=training, name=layer_block+"downsample-1")
out = flow.math.add(bn3, residual)
out = flow.nn.relu(out)
return out
class ResNeXt():
def __init__(self, images, trainable=True, training=True,
need_transpose=False, channel_last=False, block=None, layers=[],
num_classes=1000, num_group=32):
self.input = 64
self.images = images
self.trainable = trainable
self.training = training
self.data_format = "NHWC" if channel_last else "NCHW"
self.need_transpose=need_transpose
self.layers = layers
self.block = block
self.num_classes = num_classes
self.num_group = num_group
self.block_expansion = 1 if self.block == basic_block else 4
super(ResNeXt, self).__init__()
def _make_layer(self, inputs, filters, blocks, num_group, strides=1,
layer_num=""):
downsample = None
if strides != 1 or self.input != filters * self.block_expansion:
downsample = True
block_out = self.block(inputs, filters, strides,
downsample, num_group=self.num_group, trainable=self.trainable,
training=self.training,
layer_block=layer_num+"-0-")
layers = []
layers.append(block_out)
self.input = filters * self.block_expansion
for i in range(1, blocks):
block_out = self.block(block_out, filters,
strides=1, downsample=False, num_group=num_group,
trainable=self.trainable, training=self.training,
layer_block=layer_num+"-"+str(i)+"-")
layers.append(block_out)
return layers
def build_network(self):
if self.need_transpose:
images = flow.transpose(self.images, name="transpose", perm=[0, 3, 1,
2])
else:
images = self.images
conv1 = _conv2d(images, 64, kernel_size=7, strides=2,
padding=([0, 0], [0, 0], [3, 3], [3, 3]),
groups=1, use_bias=False, trainable=self.trainable, name="conv1")
bn1 = _batch_norm(conv1, trainable=self.trainable, training=self.training, name="bn1")
relu = flow.nn.relu(bn1, name="relu1")
max_pool = flow.nn.max_pool2d(relu, ksize=3, strides=2,
padding=[[0, 0], [0, 0], [1, 1], [1, 1]], data_format="NCHW", name="max_pool")
layer1 = self._make_layer(max_pool, 64, self.layers[0],
self.num_group, layer_num="layer1")
layer2 = self._make_layer(layer1[-1], 128, self.layers[1],
self.num_group, strides=2, layer_num="layer2")
layer3 = self._make_layer(layer2[-1], 256, self.layers[2],
self.num_group, strides=2, layer_num="layer3")
layer4 = self._make_layer(layer3[-1], 512, self.layers[3],
self.num_group, strides=2, layer_num="layer4")
# debug mode: dump data for debugging
# with flow.watch_scope(blob_watcher=blob_watched,
# diff_blob_watcher=diff_blob_watched):
# bn1_identity = flow.identity(layer4[-1], name="layer4_last_out")
avg_pool = flow.nn.avg_pool2d(layer4[-1], 7, strides=1, padding="VALID",
data_format="NCHW", name="avg_pool")
reshape = flow.reshape(avg_pool, (avg_pool.shape[0], -1))
fc = flow.layers.dense(reshape, units=self.num_classes, use_bias=True,
kernel_initializer=_get_initializer("dense_weight"),
bias_initializer=_get_initializer("dense_bias"),
trainable=self.trainable,
kernel_regularizer=_get_regularizer("dense_weight"),
bias_regularizer=_get_regularizer("dense_bias"),
name="fc")
return fc
def resnext18(images, trainable=True, training=True, need_transpose=False,
channel_last=False, **kwargs):
"""Constructs a ResNeXt-18 model.
"""
resnext_18 = ResNeXt(images, trainable=trainable, training=training,
need_transpose=need_transpose, channel_last=channel_last,
block=basic_block, layers=[2, 2, 2, 2], **kwargs)
model = resnext_18.build_network()
return model
def resnext34(images, trainable=True, training=True, need_transpose=False,
channel_last=False, **kwargs):
"""Constructs a ResNeXt-34 model.
"""
resnext_34 = ResNeXt(images, trainable=trainable, training=training,
need_transpose=False, channel_last=False,
block=basic_block, layers=[3, 4, 6, 3], **kwargs)
model = resnext_34.build_network()
return model
def resnext50(images, args, trainable=True, training=True, need_transpose=False,
**kwargs):
"""Constructs a ResNeXt-50 model.
"""
resnext_50 = ResNeXt(images, trainable=trainable, training=training,
need_transpose=need_transpose, channel_last=args.channel_last,
block=bottle_neck, layers=[3, 4, 6, 3], **kwargs)
model = resnext_50.build_network()
return model
def resnext101(images, args, trainable=True, training=True, need_transpose=False,
**kwargs):
"""Constructs a ResNeXt-101 model.
"""
resnext_101 = ResNeXt(images, trainable=trainable, training=training,
need_transpose=False, channel_last=args.channel_last,
block=bottle_neck, layers=[3, 4, 23, 3], **kwargs)
model = resnex_101.build_network()
return model
def resnext152(images, args, trainable=True, training=True, need_transpose=False,
**kwargs):
"""Constructs a ResNeXt-152 model.
"""
resnext_152 = ResNeXt(images, trainable=trainable, training=training,
need_transpose=need_transpose, channel_last=args.channel_last,
block=bottle_neck, layers=[3, 8, 36, 3], **kwargs)
model = resnext_152.build_network()
return model