-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathof_cnn_train_val.py
executable file
·145 lines (117 loc) · 5.23 KB
/
of_cnn_train_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import os
import math
import oneflow as flow
import ofrecord_util
import optimizer_util
import config as configs
from util import Snapshot, Summary, InitNodes, Metric
from job_function_util import get_train_config, get_val_config
import resnet_model
import resnext_model
import vgg_model
import alexnet_model
import inception_model
import mobilenet_v2_model
parser = configs.get_parser()
args = parser.parse_args()
configs.print_args(args)
total_device_num = args.num_nodes * args.gpu_num_per_node
train_batch_size = total_device_num * args.batch_size_per_device
val_batch_size = total_device_num * args.val_batch_size_per_device
(C, H, W) = args.image_shape
epoch_size = math.ceil(args.num_examples / train_batch_size)
num_val_steps = int(args.num_val_examples / val_batch_size)
model_dict = {
"resnet50": resnet_model.resnet50,
"vgg": vgg_model.vgg16bn,
"alexnet": alexnet_model.alexnet,
"inceptionv3": inception_model.inceptionv3,
"mobilenetv2": mobilenet_v2_model.Mobilenet,
"resnext50": resnext_model.resnext50,
}
flow.config.gpu_device_num(args.gpu_num_per_node)
#flow.config.enable_debug_mode(True)
if args.use_fp16 and args.num_nodes * args.gpu_num_per_node > 1:
flow.config.collective_boxing.nccl_fusion_all_reduce_use_buffer(False)
if args.nccl_fusion_threshold_mb:
flow.config.collective_boxing.nccl_fusion_threshold_mb(args.nccl_fusion_threshold_mb)
if args.nccl_fusion_max_ops:
flow.config.collective_boxing.nccl_fusion_max_ops(args.nccl_fusion_max_ops)
def label_smoothing(labels, classes, eta, dtype):
assert classes > 0
assert eta >= 0.0 and eta < 1.0
return flow.one_hot(labels, depth=classes, dtype=dtype,
on_value=1 - eta + eta / classes, off_value=eta/classes)
@flow.global_function("train", get_train_config(args))
def TrainNet():
if args.train_data_dir:
assert os.path.exists(args.train_data_dir)
print("Loading data from {}".format(args.train_data_dir))
(labels, images) = ofrecord_util.load_imagenet_for_training(args)
else:
print("Loading synthetic data.")
(labels, images) = ofrecord_util.load_synthetic(args)
logits = model_dict[args.model](images, args)
if args.label_smoothing > 0:
one_hot_labels = label_smoothing(labels, args.num_classes, args.label_smoothing, logits.dtype)
loss = flow.nn.softmax_cross_entropy_with_logits(one_hot_labels, logits, name="softmax_loss")
else:
loss = flow.nn.sparse_softmax_cross_entropy_with_logits(labels, logits, name="softmax_loss")
if not args.use_fp16:
loss = flow.math.reduce_mean(loss)
predictions = flow.nn.softmax(logits)
outputs = {"loss": loss, "predictions": predictions, "labels": labels}
# set up warmup,learning rate and optimizer
optimizer_util.set_up_optimizer(loss, args)
return outputs
@flow.global_function("predict", get_val_config(args))
def InferenceNet():
if args.val_data_dir:
assert os.path.exists(args.val_data_dir)
print("Loading data from {}".format(args.val_data_dir))
(labels, images) = ofrecord_util.load_imagenet_for_validation(args)
else:
print("Loading synthetic data.")
(labels, images) = ofrecord_util.load_synthetic(args)
logits = model_dict[args.model](images, args)
predictions = flow.nn.softmax(logits)
outputs = {"predictions": predictions, "labels": labels}
return outputs
def main():
InitNodes(args)
flow.env.log_dir(args.log_dir)
summary = Summary(args.log_dir, args)
snapshot = Snapshot(args.model_save_dir, args.model_load_dir)
for epoch in range(args.num_epochs):
metric = Metric(desc='train', calculate_batches=args.loss_print_every_n_iter,
summary=summary, save_summary_steps=epoch_size,
batch_size=train_batch_size, loss_key='loss')
for i in range(epoch_size):
TrainNet().async_get(metric.metric_cb(epoch, i))
# flow.tensorrt.write_int8_calibration("./int8_calibration") # mkdir int8_calibration
if args.val_data_dir:
metric = Metric(desc='validation', calculate_batches=num_val_steps, summary=summary,
save_summary_steps=num_val_steps, batch_size=val_batch_size)
for i in range(val_batch_size):
# if i<=10:
# InferenceNet().get()
# if i ==10:
# flow.tensorrt.cache_int8_calibration()
# else:
# InferenceNet().async_get(metric.metric_cb(epoch, i))
InferenceNet().async_get(metric.metric_cb(epoch, i))
snapshot.save('epoch_{}'.format(epoch))
if __name__ == "__main__":
main()