-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathextract_mindspore_logs_time.py
145 lines (114 loc) · 4.52 KB
/
extract_mindspore_logs_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import os
import re
import sys
import glob
import json
import argparse
import pprint
import time
import datetime
import numpy as np
pp = pprint.PrettyPrinter(indent=1)
parser = argparse.ArgumentParser(description="flags for benchmark")
parser.add_argument("--log_dir", type=str, default="./logs/mindspore/bert/bz32", required=True)
parser.add_argument("--output_dir", type=str, default="./result", required=False)
parser.add_argument('--warmup_batches', type=int, default=20)
parser.add_argument('--train_batches', type=int, default=120)
args = parser.parse_args()
class AutoVivification(dict):
"""Implementation of perl's autovivification feature."""
def __getitem__(self, item):
try:
return dict.__getitem__(self, item)
except KeyError:
value = self[item] = type(self)()
return value
def extract_info_from_file(log_file, result_dict, speed_dict):
# extract info from file name
fname = os.path.basename(log_file)
run_case = log_file.split("/")[-2] # eg: 1n1g
model = fname.split("_")[0]
batch_size = int(fname.split("_")[1].strip("b"))
pricition = fname.split("_")[2]
test_iter = int(fname.split("_")[3].strip(".log"))
assert args.train_batches > args.warmup_batches
node_num = int(run_case[0])
if len(run_case) == 4:
card_num = int(run_case[-2])
elif len(run_case) == 5:
card_num = int(run_case[-3:-1])
total_batch_size = node_num * card_num * batch_size
tmp_dict = {
'average_speed': 0,
'batch_size_per_device': batch_size,
}
avg_speed = 0
# extract info from file content
time_pt = re.compile(r"(?<=epoch\stime:\s)\d+.\d{3}", re.S)
step_pt = re.compile(r"(?<=step:\s)\d+", re.S)
cur_step = 0
cost_time = 0
with open(log_file) as f:
lines = f.readlines()
for line in lines:
if "epoch:" in line and "step:" in line:
cur_step = float(re.findall(step_pt, line)[0])
if cur_step > args.train_batches:
break
if "epoch time:" in line:
if cur_step > args.warmup_batches:
epoch_time = re.findall(time_pt, line)[0]
cost_time += float(epoch_time)
iter_num = args.train_batches-args.warmup_batches
iter_num *= node_num * card_num
cost_time /= 1000
if cost_time <= 1e-5:
print(log_file, "cost time is 0")
return
avg_speed = round(float(total_batch_size) / (cost_time / iter_num), 2)
# compute avg throughoutput
tmp_dict['average_speed'] = avg_speed
result_dict[model][run_case]['average_speed'] = avg_speed
result_dict[model][run_case]['batch_size_per_device'] = tmp_dict['batch_size_per_device']
speed_dict[model][run_case][test_iter] = avg_speed
print(log_file, speed_dict[model][run_case])
def compute_speedup(result_dict, speed_dict):
model_list = [key for key in result_dict] # eg.['vgg16', 'rn50']
for m in model_list:
run_case = [key for key in result_dict[m]] # eg.['4n8g', '2n8g', '1n8g', '1n4g', '1n1g']
for d in run_case:
speed_up = 1.0
if result_dict[m]['1n1g']['average_speed']:
result_dict[m][d]['average_speed'] = compute_average(speed_dict[m][d])
result_dict[m][d]['median_speed'] = compute_median(speed_dict[m][d])
speed_up = result_dict[m][d]['median_speed'] / compute_median(speed_dict[m]['1n1g'])
result_dict[m][d]['speedup'] = round(speed_up, 2)
def compute_median(iter_dict):
speed_list = [i for i in iter_dict.values()]
return round(np.median(speed_list), 2)
def compute_average(iter_dict):
i = 0
total_speed = 0
for iter in iter_dict:
i += 1
total_speed += iter_dict[iter]
return round(total_speed / i, 2)
def extract_result():
result_dict = AutoVivification()
speed_dict = AutoVivification()
logs_list = glob.glob(os.path.join(args.log_dir, "*/*.log"))
for l in logs_list:
extract_info_from_file(l, result_dict, speed_dict)
# compute speedup
compute_speedup(result_dict, speed_dict)
# print result
pp.pprint(result_dict)
# write to file as JSON format
os.makedirs(args.output_dir, exist_ok=True)
framwork = args.log_dir.split('/')[-1]
result_file_name = os.path.join(args.output_dir, framwork + "_result.json")
print("Saving result to {}".format(result_file_name))
with open(result_file_name, 'w') as f:
json.dump(result_dict, f)
if __name__ == "__main__":
extract_result()