-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBiketry6py.py
253 lines (196 loc) · 8.88 KB
/
Biketry6py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- coding: utf-8 -*-
"""
Created on Mon Jan 13 17:33:00 2020
@author: Omar Elfarouk
Cretits to OKORNOE and Get hub
"""
import time
import pandas as pd
import numpy as np
#%%
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
month_dic = {1:"January", 2:"february", 3:"March", 4:"April", 5:"May", 6:"June",-1:"all"}
days_dic = {1:"Monday", 2:"Tuesday", 3:"Wednesday", 4:"Thursday", 5:"Friday",
6:"Saturday", 7:"Sunday",-1:"all"}
letters_dic = {'a':'chicago','b':'new york city','c':'washington'}
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city_input = input("\nChoose any of the cities by using either 'a' for Chicago,'b' for New york city or 'c' for washington\n")
letter = city_input.lower()
while letter in letters_dic:
city = city_input.lower()
letter = city_input.lower()
if letter not in letters_dic:
city_input = input("\nInvaild input; Enter the city you which to analyse again\n")
city = city_input.lower()
letter = city_input.lower()
else if(ValueError == True):
city_input = input("\n the value entered seems to be not letters Enter again city you which to analyse again\n")
city = city_input.lower()
letter = city_input.lower()
else if(KeyboardInterrupt== True):
city_input = input("\ntry not to escape; Enter the city you which to analyse again\n")
city = city_input.lower()
letter = city_input.lower()
# TO DO: get user input for month (all, january, february, ... , june)
city = letters_dic[letter]
print("Enter -1 to apply no month filter to the data")
print("Please enter 1 for January and 6 for June in that order")
month_input = input("Enter the month you want to filter\n")
month = int(month_input)
while month not in month_dic:
month_input = input("\nInvalid input; Enter the month you want to filter again\n")
month = int(month_input)
month = month_dic[month].lower()
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
print("Enter -1 to apply no month filter to the data")
print("Please enter 1 for monday and 7 for sunday in that order\n")
day_input = input("\nEnter the day you want to filter\n")
day = int(day_input)
while day not in days_dic:
day_input = input("\nEnter the day you want to filter again\n")
day = int(day_input)
day = days_dic[day]
print('-' * 40)
return city, month, day
print(CITY_DATA[city])
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
# load data file into a dataframe
df = pd.read_csv(CITY_DATA[city])
# # convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
#
# extract month and day of week from Start Time to create new columns
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
# filter by month if applicable
if month != 'all':
# use the index of the months list to get the corresponding int
months = ['january', 'february', 'march', 'april', 'may', 'june']
month = months.index(month) + 1
# filter by month to create the new dataframe
df = df[df['month'] == month]
# filter by day of week if applicable
if day != 'all':
# filter by day of week to create the new dataframe
df = df[df['day_of_week'] == day.title()]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# convert the Start Time column to datetime
df['Start Time'] = pd.to_datetime(df['Start Time'])
# TO DO: display the most common hour
df['hour'] = df['Start Time'].dt.hour
# find the most popular hour
common_hour = df['hour'].mode()[0]
print('Most Popular Start Hour:', common_hour)
df['month'] = df['Start Time'].dt.month
# find the most popular hour
common_month = df['month'].mode()[0]
print('Most Popular month:', month_dic[common_month])
df['day'] = df['Start Time'].dt.weekday
# find the most popular hour
common_day = df['day'].mode()[0]
print('Most Popular day:', days_dic[common_day+1])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
common_start_station = df['Start Station'].mode()[0]
print("The common use start station is: " , common_start_station)
# TO DO: display most commonly used end station
common_end_station = df['End Station'].mode()[0]
print("The most common end station is: ", common_end_station)
# TO DO: display most frequent combination of start station and end station trip
df['start_end_station'] = df['Start Station'] + ' to ' + df['End Station']
print(df.start_end_station.mode().loc[0])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
total_travel = df['Trip Duration'].sum()
print("Total time travel is: ", total_travel)
mean = df['Trip Duration'].mean()
print("mean of trip duration is ", mean)
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
user_type_count = df['User Type'].value_counts()
print("User type count is ", user_type_count)
# TO DO: Display counts of gender
if 'Gender' in df.columns:
gender = df['Gender'].value_counts()
print("User type count is ", gender)
else:
print("This data has no Gender column")
# TO DO: Display earliest, most recent, and most common year of birth
if 'Birth Year' in df.columns:
most_recent_birth_year = df['Birth Year'].max()
most_earliest_birth_year = df['Birth Year'].min()
most_common_birth_year = df['Birth Year'].mode()[0]
print("Most recent birth year is {}".format(most_recent_birth_year))
print("Most earliest birth year is {}".format(most_earliest_birth_year))
print("Most common birth year is {}".format(most_common_birth_year))
else:
print("This dataset has no birth year")
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def view_raw_data(df):
input_list = ["yes", "no"]
n =5
while True:
user_input = input("\nDo you want to see (more) raw data; Enter yes or no\n")
if user_input not in input_list:
user_input = input("\nInvalid input, try again\n")
elif user_input == input_list[0]:
new_list = df.head(n).to_dict(orient='records')
for item in new_list:
print(item,'\n')
n+=5
else:
break
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
view_raw_data(df)
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()