-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathtrain.py
170 lines (143 loc) · 5.03 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from model import GPT
from config import GPTConfig, TrainingConfig
from functools import partial
import time
import math
import os
import torch
from torch.utils.tensorboard.writer import SummaryWriter
from dataset import Task
train_config = TrainingConfig()
out_dir = "out/"
writer = SummaryWriter(log_dir=os.path.join(out_dir, "logs"))
resume = False
tokens_per_iter = (
train_config.gradient_accumulation_steps
* train_config.batch_size
* GPTConfig.block_size
)
print("Tokens per iteration: ", tokens_per_iter)
torch.manual_seed(42)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision("high")
ctx = torch.autocast(train_config.device, dtype=torch.bfloat16)
model_args = dict(
n_layer=GPTConfig.n_layer,
n_head=GPTConfig.n_head,
n_embed=GPTConfig.n_embed,
block_size=GPTConfig.block_size,
bias=GPTConfig.bias,
vocab_size=GPTConfig.vocab_size,
dropout=GPTConfig.dropout,
)
iter_batches = partial(
Task.iter_batches,
batch_size=train_config.batch_size,
max_seq_len=GPTConfig.block_size,
device=train_config.device,
num_workers=0,
)
best_val_loss = 1e9
if resume:
ckpt_path = os.path.join(out_dir, "ckpt.pt")
checkpoint = torch.load(ckpt_path, map_location=train_config.device)
gptconf = GPTConfig(**checkpoint["model_args"])
model = GPT(gptconf)
state_dict = checkpoint["model"]
unwanted_prefix = "_orig_mod."
best_val_loss = checkpoint["best_val_loss"]
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
model.load_state_dict(state_dict)
print("Loaded checkpoint")
else:
gptconf = GPTConfig(**model_args)
model = GPT(gptconf).to(train_config.device)
scaler = torch.GradScaler(enabled=(train_config.dtype == "float16"))
optimizer = model.configure_optimizers(
train_config.weight_decay,
train_config.learning_rate,
(train_config.beta1, train_config.beta2),
train_config.device,
)
if train_config.compile:
model = torch.compile(model)
@torch.no_grad()
def estimate_loss():
out = {}
model.eval()
for split in ["train", "val"]:
losses = torch.zeros(train_config.eval_iters)
batch_iter = iter_batches(split=split)
for k in range(train_config.eval_iters):
X, Y = next(batch_iter)
with ctx:
_, loss = model(X, Y)
losses[k] = loss.item()
out[split] = losses.mean()
model.train()
return out
def get_lr(it):
if it < train_config.warmup_iters:
return train_config.learning_rate * (it + 1) / (train_config.warmup_iters + 1)
if it > train_config.lr_decay_iters:
return train_config.min_lr
decay_ratio = (it - train_config.warmup_iters) / (
train_config.lr_decay_iters - train_config.warmup_iters
)
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return train_config.min_lr + coeff * (
train_config.learning_rate - train_config.min_lr
)
params = sum([p.numel() for p in model.parameters() if p.requires_grad])
print("Number of params:", params)
train_batch_iter = iter_batches(split="train")
X, Y = next(train_batch_iter)
iter_num = 0
t0 = time.time()
while True:
lr = get_lr(iter_num) if train_config.decay_lr else train_config.learning_rate
for param_group in optimizer.param_groups:
param_group["lr"] = lr
if iter_num % train_config.eval_interval == 0:
losses = estimate_loss()
print(
f"step {iter_num}: train_loss {losses['train']:.4f}, val_loss {losses['val']:.4f}"
)
writer.add_scalar("train_loss", losses["train"], iter_num)
writer.add_scalar("val_loss", losses["val"], iter_num)
writer.add_scalar("lr", lr, iter_num)
if losses["val"] < best_val_loss:
best_val_loss = losses["val"]
checkpoint = {
"model": model.state_dict(),
"model_args": model_args,
"iter_num": iter_num,
"best_val_loss": best_val_loss,
}
print(f"Saving checkpoint to {out_dir}")
torch.save(checkpoint, os.path.join(out_dir, "ckpt.pt"))
for micro_step in range(train_config.gradient_accumulation_steps):
with ctx:
logits, loss = model(X, Y)
loss = loss / train_config.gradient_accumulation_steps
X, Y = next(train_batch_iter)
scaler.scale(loss).backward()
if train_config.grad_clip != 0.0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), train_config.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
t1 = time.time()
dt = t1 - t0
t0 = t1
if iter_num % train_config.log_interval == 0:
lossf = loss.item() * train_config.gradient_accumulation_steps
print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms")
iter_num += 1
if iter_num > train_config.max_iters:
break
writer.close()