-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathsample.py
134 lines (118 loc) · 3.73 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import torch
import argparse
from tokenizer import Tokenizer
from model import GPT
from config import GPTConfig
def parse_args():
parser = argparse.ArgumentParser(description="GPT Inference Script")
parser.add_argument(
"--ckpt_path",
type=str,
required=False,
help="Full path to the checkpoint file",
default="out/ckpt.pt"
)
parser.add_argument(
"--tokenizer_path",
type=str,
default=os.path.join("data", "tok4096.model"),
help="Path to tokenizer model",
)
parser.add_argument(
"--prompt", type=str, required=True, help="Input prompt for generation"
)
parser.add_argument(
"--num_samples", type=int, default=3, help="Number of samples to generate"
)
parser.add_argument(
"--max_new_tokens",
type=int,
default=500,
help="Maximum number of new tokens to generate",
)
parser.add_argument(
"--temperature", type=float, default=0.5, help="Sampling temperature"
)
parser.add_argument(
"--top_k", type=int, default=None, help="Top-k sampling parameter"
)
parser.add_argument(
"--top_p", type=float, default=None, help="Top-p (nucleus) sampling parameter"
)
parser.add_argument(
"--min_p", type=float, default=0.05, help="Minimum probability for sampling"
)
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument(
"--device",
type=str,
default="cuda",
choices=["cuda", "cpu"],
help="Device to run inference on",
)
parser.add_argument(
"--dtype",
type=str,
default="bfloat16",
choices=["float16", "bfloat16", "float32"],
help="Data type for inference",
)
parser.add_argument(
"--compile", action="store_true", help="Whether to compile the model"
)
return parser.parse_args()
def setup_device(args):
torch.manual_seed(args.seed)
if args.device == "cuda":
torch.cuda.manual_seed(args.seed)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
dtype_map = {
"float16": torch.float16,
"bfloat16": torch.bfloat16,
"float32": torch.float32,
}
dtype = dtype_map[args.dtype]
ctx = torch.autocast(args.device, dtype=dtype)
return ctx
def load_model(args):
checkpoint = torch.load(args.ckpt_path, map_location=args.device)
gptconf = GPTConfig(**checkpoint["model_args"])
model = GPT(gptconf)
state_dict = checkpoint["model"]
unwanted_prefix = "_orig_mod."
for k, _ in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
model.load_state_dict(state_dict)
model.eval()
model.to(args.device)
if args.compile:
model = torch.compile(model)
return model
def main():
args = parse_args()
ctx = setup_device(args)
model = load_model(args)
enc = Tokenizer(args.tokenizer_path)
encode = lambda s: enc.encode(s, bos=True, eos=False)
decode = lambda l: enc.decode(l)
x = torch.tensor(
encode(args.prompt), dtype=torch.long, device=args.device
).unsqueeze(0)
with torch.no_grad():
with ctx:
for k in range(args.num_samples):
y = model.generate(
x,
args.max_new_tokens,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
min_p=args.min_p,
)
print(decode(y[0].tolist()))
print("------------------")
if __name__ == "__main__":
main()