You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I've created a project that wraps Torch7 using Lusty as an API. I've created a file named app/requests/classify.lua and although the first request to the process completes successfully, each subsequent request fails with the error attempt to index a nil value.
I can only assume that I'm not using the framework properly and need to utilize events. However, there's a serious lack of examples to understand exactly what to do.
Here's the code in classify.lua, how can I properly chain it so that it properly initializes Torch and won't encounter nil value errors? Or how can I point to a torch queue for background workers (I can easily code that part up)?
Thanks for your help!
torch = require 'torch'
nn = require 'nn'
image = require 'image'
ParamBank = require 'ParamBank'
label = require 'classifier_label'
torch.setdefaulttensortype('torch.FloatTensor')
function classifyImage()
local opt = {
inplace = false,
network = "big",
backend = "nn",
save = "model.t7",
img = context.input.image,
spatial = false,
threads = 4
}
torch.setnumthreads(opt.threads)
require(opt.backend)
local SpatialConvolution = nn.SpatialConvolutionMM
local SpatialMaxPooling = nn.SpatialMaxPooling
local ReLU = nn.ReLU
local SpatialSoftMax = nn.SpatialSoftMax
local net = nn.Sequential()
print('==> init a big overfeat network')
net:add(SpatialConvolution(3, 96, 7, 7, 2, 2))
net:add(ReLU(opt.inplace))
net:add(SpatialMaxPooling(3, 3, 3, 3))
net:add(SpatialConvolution(96, 256, 7, 7, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialMaxPooling(2, 2, 2, 2))
net:add(SpatialConvolution(256, 512, 3, 3, 1, 1, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialConvolution(512, 512, 3, 3, 1, 1, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialConvolution(512, 1024, 3, 3, 1, 1, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialConvolution(1024, 1024, 3, 3, 1, 1, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialMaxPooling(3, 3, 3, 3))
net:add(SpatialConvolution(1024, 4096, 5, 5, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialConvolution(4096, 4096, 1, 1, 1, 1))
net:add(ReLU(opt.inplace))
net:add(SpatialConvolution(4096, 1000, 1, 1, 1, 1))
net:add(nn.View(1000))
net:add(SpatialSoftMax())
-- print(net)
-- init file pointer
print('==> overwrite network parameters with pre-trained weigts')
ParamBank:init("net_weight_1")
ParamBank:read( 0, {96,3,7,7}, net:get(1).weight)
ParamBank:read( 14112, {96}, net:get(1).bias)
ParamBank:read( 14208, {256,96,7,7}, net:get(4).weight)
ParamBank:read( 1218432, {256}, net:get(4).bias)
ParamBank:read( 1218688, {512,256,3,3}, net:get(7).weight)
ParamBank:read( 2398336, {512}, net:get(7).bias)
ParamBank:read( 2398848, {512,512,3,3}, net:get(9).weight)
ParamBank:read( 4758144, {512}, net:get(9).bias)
ParamBank:read( 4758656, {1024,512,3,3}, net:get(11).weight)
ParamBank:read( 9477248, {1024}, net:get(11).bias)
ParamBank:read( 9478272, {1024,1024,3,3}, net:get(13).weight)
ParamBank:read( 18915456, {1024}, net:get(13).bias)
ParamBank:read( 18916480, {4096,1024,5,5}, net:get(16).weight)
ParamBank:read(123774080, {4096}, net:get(16).bias)
ParamBank:read(123778176, {4096,4096,1,1}, net:get(18).weight)
ParamBank:read(140555392, {4096}, net:get(18).bias)
ParamBank:read(140559488, {1000,4096,1,1}, net:get(20).weight)
ParamBank:read(144655488, {1000}, net:get(20).bias)
ParamBank:close()
-- load and preprocess image
print('==> prepare an input image')
local img = image.load(opt.img):mul(255)
-- use image larger than the eye size in spatial mode
if not opt.spatial then
local dim = (opt.network == 'small') and 231 or 221
local img_scale = image.scale(img, '^'..dim)
local h = math.ceil((img_scale:size(2) - dim)/2)
local w = math.ceil((img_scale:size(3) - dim)/2)
img = image.crop(img_scale, w, h, w + dim, h + dim):floor()
end
-- memcpy from system RAM to GPU RAM if cuda enabled
if opt.backend == 'cunn' or opt.backend == 'cudnn' then
net:cuda()
img = img:cuda()
end
-- save bare network (before its buffer filled with temp results)
print('==> save model to:', opt.save)
torch.save(opt.save, net)
-- feedforward network
print('==> feed the input image')
timer = torch.Timer()
img:add(-118.380948):div(61.896913)
local out = net:forward(img)
-- find output class name in non-spatial mode
local results = {}
local topN = 10
local probs, idxs = torch.topk(out, topN, 1, true)
for i=1,topN do
print(label[idxs[i]], probs[i])
local r = {}
r.label = label[idxs[i]]
r.prob = probs[i]
results[i] = r
end
return results
end
function errorHandler(err)
return tostring( err )
end
local success, result = xpcall(classifyImage, errorHandler)
context.template = {
type = "mustache",
name = "app/templates/layout",
partials = {
content = "app/templates/classify",
}
}
context.output = {
success = success,
result = result,
request = context.input
}
context.response.status = 200
The text was updated successfully, but these errors were encountered:
I've created a project that wraps Torch7 using Lusty as an API. I've created a file named
app/requests/classify.lua
and although the first request to the process completes successfully, each subsequent request fails with the errorattempt to index a nil value
.I can only assume that I'm not using the framework properly and need to utilize events. However, there's a serious lack of examples to understand exactly what to do.
Here's the code in
classify.lua
, how can I properly chain it so that it properly initializes Torch and won't encounter nil value errors? Or how can I point to a torch queue for background workers (I can easily code that part up)?Thanks for your help!
The text was updated successfully, but these errors were encountered: