-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlosspad.py
executable file
·506 lines (410 loc) · 19.7 KB
/
losspad.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# Third party inports
import tensorflow as tf
import keras.backend as K
import numpy as np
import pdb as gdb
import math
import scipy.io as sio
# batch_sizexheightxwidthxdepthxchan
from scipy.signal import convolve2d
def diceLoss(y_true, y_pred):
top = 2*tf.reduce_sum(y_true * y_pred, [1, 2, 3])
bottom = tf.maximum(tf.reduce_sum(y_true+y_pred, [1, 2, 3]), 1e-5)
dice = tf.reduce_mean(top/bottom)
return -dice
def gradientLoss(penalty='l1'):
def loss(y_true, y_pred):
dy = tf.abs(y_pred[:, 1:, :, :, :] - y_pred[:, :-1, :, :, :])
dx = tf.abs(y_pred[:, :, 1:, :, :] - y_pred[:, :, :-1, :, :])
dz = tf.abs(y_pred[:, :, :, 1:, :] - y_pred[:, :, :, :-1, :])
if (penalty == 'l2'):
dy = dy * dy
dx = dx * dx
dz = dz * dz
d = tf.reduce_mean(dx)+tf.reduce_mean(dy)+tf.reduce_mean(dz)
return d/3.0
return loss
def gradientLoss2D():
def loss(y_true, y_pred):
dy = tf.abs(y_pred[:, 1:, :, :] - y_pred[:, :-1, :, :])
dx = tf.abs(y_pred[:, :, 1:, :] - y_pred[:, :, :-1, :])
dy = dy * dy
dx = dx * dx
d = tf.reduce_mean(dx)+tf.reduce_mean(dy)
return d/2.0
return loss
def cc3D(win=[9, 9, 9], voxel_weights=None):
def loss(I, J):
I2 = I*I
J2 = J*J
IJ = I*J
filt = tf.ones([win[0], win[1], win[2], 1, 1])
I_sum = tf.nn.conv3d(I, filt, [1, 1, 1, 1, 1], "SAME")
J_sum = tf.nn.conv3d(J, filt, [1, 1, 1, 1, 1], "SAME")
I2_sum = tf.nn.conv3d(I2, filt, [1, 1, 1, 1, 1], "SAME")
J2_sum = tf.nn.conv3d(J2, filt, [1, 1, 1, 1, 1], "SAME")
IJ_sum = tf.nn.conv3d(IJ, filt, [1, 1, 1, 1, 1], "SAME")
win_size = win[0]*win[1]*win[2]
u_I = I_sum/win_size
u_J = J_sum/win_size
cross = IJ_sum - u_J*I_sum - u_I*J_sum + u_I*u_J*win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I*u_I*win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J*u_J*win_size
cc = cross*cross / (I_var*J_var+1e-5)
# if(voxel_weights is not None):
# cc = cc * voxel_weights
return -1.0*tf.reduce_mean(cc)
return loss
def cc2D(win=[9, 9]):
def loss(I, J):
I2 = tf.multiply(I, I)
J2 = tf.multiply(J, J)
IJ = tf.multiply(I, J)
sum_filter = tf.ones([win[0], win[1], 1, 1])
I_sum = tf.nn.conv2d(I, sum_filter, [1, 1, 1, 1], "SAME")
J_sum = tf.nn.conv2d(J, sum_filter, [1, 1, 1, 1], "SAME")
I2_sum = tf.nn.conv2d(I2, sum_filter, [1, 1, 1, 1], "SAME")
J2_sum = tf.nn.conv2d(J2, sum_filter, [1, 1, 1, 1], "SAME")
IJ_sum = tf.nn.conv2d(IJ, sum_filter, [1, 1, 1, 1], "SAME")
win_size = win[0]*win[1]
u_I = I_sum/win_size
u_J = J_sum/win_size
cross = IJ_sum - u_J*I_sum - u_I*J_sum + u_I*u_J*win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I*u_I*win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J*u_J*win_size
cc = cross*cross / (I_var*J_var + np.finfo(float).eps)
return -1.0*tf.reduce_mean(cc)
return loss
def kl_loss(alpha):
def loss(_, y_pred):
"""
KL loss
y_pred is assumed to be 6 channels: first 3 for mean, next 3 for logsigma
"""
y_pred = y_pred[:,4:260,:,:]
mean = y_pred[..., 0:2]
log_sigma = y_pred[..., 2:]
sz = log_sigma.get_shape().as_list()[1:]
z = K.ones([1] + sz)
filt = np.zeros((3, 3, 2, 2))
for i in range(2):
#filt[1, 1, [0, 2], i, i] = 1
filt[1, [0, 2], i, i] = 1
filt[[0, 2], 1, i, i] = 1
filt_tf = tf.convert_to_tensor(filt, dtype=tf.float32)
#print(filt_tf.get_shape())
D = tf.nn.conv2d(z, filt_tf, [1, 1, 1, 1], 'SAME')
D = K.expand_dims(D, 0)
sigma_terms = (D * tf.exp(log_sigma) - log_sigma)
# note needs 0.5 twice, one here, one below
prec_terms = 0.5 * kl_prec_term_manual(_, mean)
kl = 0.5 * alpha * (tf.reduce_mean(sigma_terms, [1, 2]) + prec_terms)
return kl
return loss
def kl_prec_term_manual(y_true, y_pred):
"""
a more manual implementation of the precision matrix term
P = D - A
mu * P * mu
where D is the degree matrix and A is the adjacency matrix
mu * P * mu = sum_i mu_i sum_j (mu_i - mu_j)
where j are neighbors of i
"""
Ker=np.ones(y_pred.get_shape().as_list()[1:-1])
for i in range(128):
Ker[:,i]=math.sin(i*math.pi/128)+1e-6
Ker_tf=tf.convert_to_tensor(Ker,tf.float32)
Ker_tf = K.expand_dims(Ker_tf,0)#y_pred[:,:,:,1]=Ker_tf*y_pred[:,:,:,1]
uy = Ker_tf * y_pred[:,:,:,1] #ux = y_pred[:,:,:,0] y_pred = tf.stack([ux,uy])
ux = y_pred[:,:,:,0]
y_pred = tf.stack([ux,uy], axis=3)
dy = y_pred[:,1:,:,:] * (y_pred[:,1:,:,:] - y_pred[:,:-1,:,:])
dx = y_pred[:,:,1:,:] * (y_pred[:,:,1:,:] - y_pred[:,:,:-1,:])
dy2 = y_pred[:,:-1,:,:] * (y_pred[:,:-1,:,:] - y_pred[:,1:,:,:])
dx2 = y_pred[:,:,:-1,:] * (y_pred[:,:,:-1,:] - y_pred[:,:,1:,:])
d = tf.reduce_mean(dx) + tf.reduce_mean(dy) + \
tf.reduce_mean(dy2) + tf.reduce_mean(dx2)
return d
def kl_correlation_coefficient_loss(image_sigma, beta):
def loss(y_true, y_pred):
y_true = y_true[:,8:520,:,:]
y_pred = y_pred[:,8:520,:,:]
area_elts = np.ones(y_pred.get_shape().as_list()[1:-1])
for i in range(area_elts.shape[1]):
area_elts[:,i]=np.max((math.sin(i*math.pi/area_elts.shape[1]),0))
area_elts_tf = tf.convert_to_tensor(area_elts,tf.float32)
area_elts_tf = K.expand_dims(area_elts_tf, 0)
area_elts_tf = K.expand_dims(area_elts_tf)
pearson_r, _ = tf.contrib.metrics.streaming_pearson_correlation(y_pred, y_true, weights=area_elts_tf)
return 1-pearson_r**2
return loss
class spherical_loss(object):
def __init__(self, image_size, threshold=0, pad=8, image_sigma=1, overlay_list = None, curvature_list = None, model = None, radius=100, win=None, eps=1e-5):
area_elts = np.ones(image_size)
for i in range(area_elts.shape[1]):
area_elts[:,i]=math.sin(i*math.pi/area_elts.shape[1])
self.radius = radius
self.area_elts = tf.convert_to_tensor(area_elts,tf.float32)
self.area_elts = K.expand_dims(self.area_elts, 0)
self.area_elts = K.expand_dims(self.area_elts)
self.set_threshold(threshold)
self.pad = pad
self.image_sigma = image_sigma
self.overlay_list = overlay_list
self.curvature_list = curvature_list
self.model = model
self.output_curvature_list = []
if self.curvature_list is not None:
for cno in range(len(self.curvature_list)):
self.output_curvature_list.append(self.curvature_list[cno])
theta = np.zeros((image_size))
phi = np.zeros((image_size))
x0 = np.zeros((image_size))
y0 = np.zeros((image_size))
z0 = np.zeros((image_size))
for theta_i in range(image_size[0]):
for phi_i in range(image_size[1]):
th = 2*np.pi*theta_i / image_size[0]
ph = np.pi*phi_i / image_size[1]
x = radius * np.sin(ph) * np.cos(th) ;
y = radius * np.sin(ph) * np.sin(th) ;
z = radius * np.cos(ph) ;
theta[theta_i, phi_i] = th
phi[theta_i, phi_i] = ph
x0[theta_i, phi_i] = x
y0[theta_i, phi_i] = y
z0[theta_i, phi_i] = z
self.theta = tf.cast(tf.convert_to_tensor(theta),tf.float32)
self.phi = tf.cast(tf.convert_to_tensor(phi), tf.float32)
self.x0 = tf.cast(tf.convert_to_tensor(x0), tf.float32)
self.y0 = tf.cast(tf.convert_to_tensor(y0), tf.float32)
self.z0 = tf.cast(tf.convert_to_tensor(z0), tf.float32)
self.dist_filters = []
self.orig_dists = []
ind = 0
for di in range(-1,2):
for dj in range(-1,2):
if (di == 0 and dj == 0):
continue
dist_filter = np.zeros((3,3))
dist_filter[1,1] = -1
dist_filter[1+di, 1+dj] = 1
self.dist_filters.append(tf.cast(tf.convert_to_tensor(dist_filter[...,np.newaxis,np.newaxis]), tf.float32))
dx = convolve2d(x0, dist_filter, mode='same')
dy = convolve2d(y0, dist_filter, mode='same')
dists = np.sqrt(np.square(dx) + np.square(dy))[np.newaxis,...,np.newaxis]
self.orig_dists.append(tf.cast(tf.convert_to_tensor(dists), tf.float32))
ind += 1
self.dists = tf.convert_to_tensor(dists)
self.win = win
self.eps = eps
return
def ncc(self, I, J):
"""
local (over window) normalized cross correlation
"""
# get dimension of volume
# assumes I, J are sized [batch_size, *vol_shape, nb_feats]
ndims = len(I.get_shape().as_list()) - 2
assert ndims in [1, 2, 3], "volumes should be 1 to 3 dimensions. found: %d" % ndims
nchannels = tf.cast(J.shape[ndims+1],tf.float32)
# set window size
if self.win is None:
self.win = [9] * ndims
# get convolution function
conv_fn = getattr(tf.nn, 'conv%dd' % ndims)
# compute CC squares
I2 = I*I
J2 = J*J
IJ = I*J
# compute filters
sum_filt = tf.ones([*self.win, nchannels, 1])
strides = 1
if ndims > 1:
strides = [1] * (ndims + 2)
padding = 'SAME'
# compute local sums via convolution
I_sum = conv_fn(I, sum_filt, strides, padding)
J_sum = conv_fn(J, sum_filt, strides, padding)
I2_sum = conv_fn(I2, sum_filt, strides, padding)
J2_sum = conv_fn(J2, sum_filt, strides, padding)
IJ_sum = conv_fn(IJ, sum_filt, strides, padding)
# compute cross correlation
win_size = np.prod(self.win) * nchannels
u_I = I_sum/win_size
u_J = J_sum/win_size
cross = IJ_sum - u_J*I_sum - u_I*J_sum + u_I*u_J*win_size
I_var = I2_sum - 2 * u_I * I_sum + u_I*u_I*win_size
J_var = J2_sum - 2 * u_J * J_sum + u_J*u_J*win_size
cc = cross*cross / (I_var*J_var + self.eps)
# return negative cc.
return tf.reduce_mean(cc*self.area_elts)
def NCC_loss(self, weight):
def loss(I,J):
I = I[:,self.pad:-self.pad,:,:]
J = J[:,self.pad:-self.pad,:,:]
return - weight * self.ncc(I, J)
return loss
def set_threshold(self, threshold):
self.threshold = threshold
return
def overlay_loss(self, y_true, y_pred):
noverlays = len(self.overlay_list)
avg = tf.zeros(self.overlay_list[0].shape)
for ono in range(noverlays):
pred = self.model.predict([self.curvature_list[ono], self.curvature_list[0], self.overlay_list[ono]])
warped_func = self.model.outputs[3]
if ono == 0:
max_val = tf.reduce_max(tf.abs(warped_func))
else:
max_this = tf.reduce_max(tf.abs(warped_func))
max_val = tf.cast(tf.greater(max_this, max_val), tf.float32)
avg = tf.add(avg, warped_func)
tf.multiply(avg, 1.0/noverlays)
return(-self.weight * tf.reduce_mean(tf.square(avg))/max_val)
def l2_loss(self, weight, image_sigma=None):
def loss(y_true, y_pred):
# only consider non-padded region
y_true = y_true[:,self.pad:-self.pad,:,:]
y_pred = y_pred[:,self.pad:-self.pad,:,:]
yt_mask = tf.cast(tf.logical_or(tf.less(y_true,-self.threshold), tf.greater(y_true, self.threshold)),tf.float32)
y_true = tf.multiply(y_true, yt_mask)
yp_mask = tf.cast(tf.logical_or(tf.less(y_pred,-self.threshold), tf.greater(y_pred, self.threshold)),tf.float32)
y_pred = tf.multiply(y_pred, yp_mask)
y = tf.square(y_pred-y_true)
y_tf = tf.multiply(tf.cast(y, tf.float32), self.area_elts)
return weight*tf.reduce_mean(0.5*y_tf/image_sigma**2)
if image_sigma == None:
image_sigma = 1
else:
image_sigma = image_sigma[:,self.pad:-self.pad,:,:]
return loss
def warp_norm_loss(self, weight):
def loss(y_true, y_pred):
warp = y_pred[0, self.pad:-self.pad, :, :]
radius = self.radius
theta = self.theta + 2* np.pi * (warp[...,0] / tf.cast(warp.shape[0],tf.float32))
phi = self.phi + np.pi * (warp[...,1] / tf.cast(warp.shape[1], tf.float32))
sin_phi = tf.sin(phi)
cos_phi = tf.cos(phi)
sin_theta = tf.sin(theta)
cos_theta = tf.cos(theta)
x = radius * sin_phi * cos_theta ;
y = radius * sin_phi * sin_theta ;
z = radius * cos_phi ;
dx = x-self.x0
dy = y-self.y0
dz = z-self.z0
sqrt_norm = tf.multiply(tf.squeeze(self.area_elts), tf.squeeze(dx*dx + dy*dy + dz*dz))
# sqrt_norm = tf.gather_nd(sqrt_norm, tf.where(tf.greater(sqrt_norm, 0)))
return weight * tf.reduce_mean(sqrt_norm)
return loss
def warp_dist_loss(self, weight):
def loss(y_true, y_pred):
warp = y_pred[0, self.pad:-self.pad, :, :]
radius = self.radius
theta = self.theta + 2* np.pi * (warp[...,0] / tf.cast(warp.shape[0],tf.float32))
phi = self.phi + np.pi * (warp[...,1] / tf.cast(warp.shape[1], tf.float32))
sin_phi = tf.sin(phi)
cos_phi = tf.cos(phi)
sin_theta = tf.sin(theta)
cos_theta = tf.cos(theta)
x = radius * sin_phi * cos_theta ;
y = radius * sin_phi * sin_theta ;
z = radius * cos_phi ;
dist_loss = 0
for ind in range(len(self.dist_filters)):
dx = tf.nn.conv2d(x[tf.newaxis,...,tf.newaxis], self.dist_filters[ind], [1,1,1,1], padding='SAME')
dy = tf.nn.conv2d(y[tf.newaxis,...,tf.newaxis], self.dist_filters[ind], [1,1,1,1], padding='SAME')
dist = tf.sqrt(tf.maximum(tf.square(dx) + tf.square(dy),0))
dist = tf.sqrt(tf.square(dx) + tf.square(dy) + .0001)
area_elts = tf.maximum(self.area_elts, 0)
dloss = tf.multiply(tf.sqrt(tf.squared_difference(dist, self.orig_dists[ind])+.0001),area_elts)
dist_loss += tf.reduce_mean(dloss)
return weight * dist_loss
return loss
def atlas_loss(self, weight):
def loss(y_true, y_pred):
area_elts = tf.squeeze(self.area_elts)
atlas_target = tf.reshape(tf.squeeze(y_true[:,self.pad:-self.pad,:,0]), area_elts.shape)
atlas = tf.reshape(tf.squeeze(y_pred[:,self.pad:-self.pad,:,1]), area_elts.shape)
warped_overlay = tf.squeeze(y_pred[:,self.pad:-self.pad,:,0])
diff_sq = tf.multiply(area_elts, tf.math.squared_difference(atlas, warped_overlay))
mean_error = tf.reduce_mean(diff_sq)
# abs_atlas = tf.abs(atlas)
# over_thresh = tf.gather_nd(abs_atlas, tf.where(tf.greater(abs_atlas, self.threshold)))
# atlas_loss = self.atlas_weight*tf.reduce_max(tf.abs(atlas))
# nvox = tf.cast(tf.size(atlas), tf.float32)
# atlas_loss = (nvox - tf.reduce_sum(over_thresh)) / nvox
# atlas_loss = tf.reduce_mean(tf.multiply(tf.squared_difference(atlas, atlas_target), area_elts))
atlas_loss = -self.ncc(atlas[np.newaxis,...,np.newaxis], atlas_target[np.newaxis,...,np.newaxis])
return weight * (mean_error + atlas_loss)
return loss
def power_loss(self, weight):
def loss(y_true, y_pred):
# only consider non-padded region
y_true = y_true[:,self.pad:-self.pad,:,:]
y_pred = y_pred[:,self.pad:-self.pad,:,:]
y_avg_sq = tf.square(tf.add(y_true, y_pred) / 2)
return weight * (5 - tf.reduce_sum(self.area_elts * y_avg_sq) / tf.reduce_sum(self.area_elts))
return loss
def thresholded_overlap_loss(self, weight):
def loss(y_true, y_pred):
# only consider non-padded region
y_true = y_true[:,self.pad:-self.pad,:,:]
y_pred = y_pred[:,self.pad:-self.pad,:,:]
yt_pos_thresh = tf.greater(y_true,self.threshold)
yp_pos_thresh = tf.greater(y_pred,self.threshold)
yt_neg_thresh = tf.greater(-y_true,self.threshold)
yp_neg_thresh = tf.greater(-y_pred,self.threshold)
pos_union = tf.logical_or(yt_pos_thresh, yp_pos_thresh)
neg_union = tf.logical_or(yt_neg_thresh, yp_neg_thresh)
pos_overlap = tf.logical_and(yt_pos_thresh, yp_pos_thresh)
neg_overlap = tf.logical_and(yt_neg_thresh, yp_neg_thresh)
# yt_pos_thresh = tf.cast(yt_pos_thresh, tf.float32)
# yp_pos_thresh = tf.cast(yp_pos_thresh, tf.float32)
# yt_neg_thresh = tf.cast(yt_neg_thresh, tf.float32)
# yp_neg_thresh = tf.cast(yp_neg_thresh, tf.float32)
pos_union = tf.cast(pos_union, tf.float32)
neg_union = tf.cast(neg_union, tf.float32)
pos_overlap = tf.cast(pos_overlap, tf.float32)
neg_overlap = tf.cast(neg_overlap, tf.float32)
# correct for metric tensor
pos_overlap = tf.multiply(pos_overlap, self.area_elts)
neg_overlap = tf.multiply(neg_overlap, self.area_elts)
pos_union = tf.multiply(pos_union, self.area_elts)
neg_union = tf.multiply(neg_union, self.area_elts)
nvoxels = tf.cast(tf.multiply(y_pred.shape[1], y_pred.shape[2]), tf.float32)
noverlap = tf.reduce_sum(neg_overlap) + tf.reduce_sum(pos_overlap)
nunion = tf.reduce_sum(pos_union) + tf.reduce_sum(neg_union)
return weight*((nvoxels - noverlap)/nvoxels)
# return self.weight*(1.0 - (noverlap / (nunion+1e-5)))
return loss
def kl_l2loss_image(image_sigma, beta):
def loss(y_true, y_pred):
# only consider non-padded region
y_true = y_true[:,8:520,:,:]
y_pred = y_pred[:,8:520,:,:]
area_elts = np.ones(y_pred.get_shape().as_list()[1:-1])
for i in range(area_elts.shape[1]):
area_elts[:,i]=math.sin(i*math.pi/area_elts.shape[1])
area_elts_tf = tf.convert_to_tensor(area_elts,tf.float32)
area_elts_tf = K.expand_dims(area_elts_tf, 0)
area_elts_tf = K.expand_dims(area_elts_tf)
y = tf.square(y_pred-y_true)
y_tf = tf.multiply(tf.cast(y, tf.float32), area_elts_tf)
return beta*tf.reduce_mean(0.5*y_tf/image_sigma**2)
return loss
def kl_l2loss(image_sigma):
def loss(y_true, y_pred):
y = tf.square(y_pred[:,8:520,:,:]-y_true[:,8:520,:,:])
y_tf = tf.cast(y, tf.float32)
var_tf = tf.cast(image_sigma[:,8:520,:,:], tf.float32)
return tf.reduce_mean(tf.multiply(y_tf, var_tf))
return loss
def bound_loss(gamma):
def loss(_, y_pred):
# u = y_pred[:,0:16,:,:] - y_pred[:,512:,:,:]
u = y_pred[:,0:8,:,:] - y_pred[:,520:,:,:]
return gamma * tf.reduce_mean(tf.square(u))
return loss