forked from wang-fujin/PINN4SOH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_adaptation - fine-tuning.py
310 lines (258 loc) · 13.5 KB
/
main_adaptation - fine-tuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
from Model.Model import PINN
import torch
import torch.nn as nn
from dataloader.dataloader import XJTUdata,TJUdata
from main_HUST import load_HUST_data
from main_MIT import load_MIT_data
from Model.Model import LR_Scheduler
import argparse
import os
import numpy as np
from utils.util import AverageMeter,eval_metrix,write_to_txt
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class AdaPINN(PINN):
def __init__(self,args):
super(AdaPINN, self).__init__(args)
self.load_model(model_path=args.pretrain_model)
self.ada_optimizer = torch.optim.Adam(self.solution_u.parameters(),lr=args.adaptation_lr)
def adaptation_one_epoch(self,epoch,dataloader):
self.solution_u.train()
loss1_meter = AverageMeter()
loss2_meter = AverageMeter()
loss3_meter = AverageMeter()
for iter,(x1,x2,y1,y2) in enumerate(dataloader):
x1,x2,y1,y2 = x1.to(device),x2.to(device),y1.to(device),y2.to(device)
u1,f1 = self.forward(x1)
u2,f2 = self.forward(x2)
# data loss
loss1 = 0.5*self.loss_func(u1,y1) + 0.5*self.loss_func(u2,y2)
# PDE loss
f_target = torch.zeros_like(f1)
loss2 = 0.5*self.loss_func(f1,f_target) + 0.5*self.loss_func(f2,f_target)
# physics loss u2-u1<0, considering capacity regeneration effect
loss3 = self.relu(torch.mul(u2-u1,y1-y2)).sum()
# total loss
loss = loss1 + self.alpha*loss2 + self.beta*loss3
self.ada_optimizer.zero_grad()
loss.backward()
self.ada_optimizer.step()
loss1_meter.update(loss1.item())
loss2_meter.update(loss2.item())
loss3_meter.update(loss3.item())
debug_info = "[train] epoch:{} iter:{} data loss:{:.6f}, " \
"PDE loss:{:.6f}, physics loss:{:.6f}, " \
"total loss:{:.6f}".format(epoch,iter+1,loss1,loss2,loss3,loss.item())
if epoch < 3:
self.logger.debug(debug_info)
if (iter+1) % 50 == 0:
print("[epoch:{} iter:{}] data loss:{:.6f}, PDE loss:{:.6f}, physics loss:{:.6f}".format(epoch,iter+1,loss1,loss2,loss3))
return loss1_meter.avg,loss2_meter.avg,loss3_meter.avg
def Adaptation(self,trainloader,validloader=None,testloader=None):
for param in self.dynamical_F.parameters(): # freeze the dynamical_F
param.requires_grad = False
min_valid_mse = 10
valid_mse = 10
early_stop = 0
mae = 10
for e in range(1, self.args.adaptation_epochs + 1):
early_stop += 1
loss1, loss2, loss3 = self.adaptation_one_epoch(e, trainloader)
info = '[Train] epoch:{}, data loss:{:.6f}, ' \
'PDE loss:{:.6f}, ' \
'physics loss:{:.6f}, ' \
'total loss:{:.6f}'.format(e, loss1, loss2, loss3,
loss1 + self.alpha * loss2 + self.beta * loss3)
self.logger.info(info)
if e % 1 == 0 and validloader is not None:
valid_mse = self.Valid(validloader)
info = '[Valid] epoch:{}, MSE: {}'.format(e, valid_mse)
self.logger.info(info)
if valid_mse < min_valid_mse and testloader is not None:
min_valid_mse = valid_mse
true_label, pred_label = self.Test(testloader)
[MAE, MAPE, MSE, RMSE] = eval_metrix(pred_label, true_label)
info = '[Test] MSE: {:.8f}, MAE: {:.6f}, MAPE: {:.6f}, RMSE: {:.6f}'.format(MSE, MAE, MAPE, RMSE)
self.logger.info(info)
early_stop = 0
############################### save ############################################
self.best_model = {'solution_u': self.solution_u.state_dict(),
'dynamical_F': self.dynamical_F.state_dict()}
if self.args.save_folder is not None:
np.save(os.path.join(self.args.save_folder, 'true_label.npy'), true_label)
np.save(os.path.join(self.args.save_folder, 'pred_label.npy'), pred_label)
##################################################################################
if self.args.early_stop is not None and early_stop > self.args.early_stop:
info = 'early stop at epoch {}'.format(e)
self.logger.info(info)
break
self.clear_logger()
if self.args.save_folder is not None:
torch.save(self.best_model, os.path.join(self.args.save_folder, 'finetune model.pth'))
def load_XJTU_data(args,small_sample=None):
root = 'data/XJTU data'
batch_names= ['2C', '3C', 'R2.5', 'R3', 'RW', 'satellite']
batch_num = args.target_batch if args.target_data == 'XJTU' else args.source_batch
batch = batch_names[batch_num]
data = XJTUdata(root=root, args=args)
train_list = []
test_list = []
files = os.listdir(root)
for file in files:
if batch in file:
if '4' in file or '8' in file:
test_list.append(os.path.join(root, file))
else:
train_list.append(os.path.join(root, file))
if small_sample is not None:
train_list = train_list[:small_sample]
train_loader = data.read_all(specific_path_list=train_list)
test_loader = data.read_all(specific_path_list=test_list)
dataloader = {'train': train_loader['train_2'],
'valid': train_loader['valid_2'],
'test': test_loader['test_3']}
return dataloader
def load_TJU_data(args,small_sample=None):
root = 'data/TJU data'
data = TJUdata(root=root, args=args)
train_list = []
test_list = []
mod = [(5,9),(4,8),(5,9)]
batchs = os.listdir(root)
batch_num = args.target_batch if args.target_data == 'TJU' else args.source_batch
batch = batchs[batch_num]
batch_root = os.path.join(root,batch)
files = os.listdir(batch_root)
for i,f in enumerate(files):
id = i + 1
if id % 10 == mod[batch_num][0] or id % 10 == mod[batch_num][1]:
test_list.append(os.path.join(batch_root,f))
else:
train_list.append(os.path.join(batch_root,f))
if small_sample is not None:
train_list = train_list[:small_sample]
train_loader = data.read_all(specific_path_list=train_list)
test_loader = data.read_all(specific_path_list=test_list)
dataloader = {'train': train_loader['train_2'],
'valid': train_loader['valid_2'],
'test': test_loader['test_3']}
return dataloader
def get_args():
parser = argparse.ArgumentParser('Hyper Parameters for fine-tuning')
parser.add_argument('--batch_size', type=int, default=128, help='batch size')
parser.add_argument('--normalization_method', type=str, default='min-max', help='min-max,z-score')
# scheduler related
parser.add_argument('--epochs', type=int, default=200, help='epoch')
parser.add_argument('--early_stop', type=int, default=10, help='early stop')
parser.add_argument('--warmup_epochs', type=int, default=30, help='warmup epoch')
parser.add_argument('--warmup_lr', type=float, default=0.002, help='warmup lr')
parser.add_argument('--lr', type=float, default=0.01, help='base lr')
parser.add_argument('--final_lr', type=float, default=0.0002, help='final lr')
parser.add_argument('--lr_F', type=float, default=0.01, help='lr of F')
# model related
parser.add_argument('--F_layers_num', type=int, default=3, help='the layers num of F')
parser.add_argument('--F_hidden_dim', type=int, default=60, help='the hidden dim of F')
# loss related
parser.add_argument('--alpha', type=float, default=0.7, help='loss = l_data + alpha * l_PDE + beta * l_physics')
parser.add_argument('--beta', type=float, default=0.2, help='loss = l_data + alpha * l_PDE + beta * l_physics')
parser.add_argument('--log_dir', type=str, default='logging.txt', help='log dir, if None, do not save')
parser.add_argument('--save_folder', type=str, default='adaPINN_test', help='save folder')
# The AdaPINN class inherits the PINN class, and the above parameters are all parameters of PINN.
# The following are the parameters of AdaPINN.
# adaption related
parser.add_argument('--pretrain_model', type=str, default=None, help='The saving path of the model trained in the source domain')
parser.add_argument('--adaptation_lr', type=float, default=4e-4, help='adaption lr')
parser.add_argument('--adaptation_epochs', type=int, default=200, help='adaption epochs')
parser.add_argument('--target_data', type=str, default='XJTU', help='XJTU, HUST, MIT, TJU')
parser.add_argument('--target_batch', type=int, default=-1, choices=[-1,0,1,2,3,4,5],
help='XJTU dataset is divided into 6 batches, and TJU dataset is divided into 3 batches. '
'If target_data is XJTU, the value range of target_batch is [-1,0,1,2,3,4,5];'
'If target_data is TJU, the value range of target_batch is [-1,0,1,2];'
'If it is other datasets, ignore target_batch')
args = parser.parse_args()
return args
def one_adaptation_task(args,source,target,source_batch=-1,target_batch=-1):
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
if source in ['XJTU','TJU']:
model_dir = f'./pretrained model/model_{source}_{source_batch}.pth'
else:
model_dir = f'./pretrained model/model_{source}.pth'
setattr(args,'pretrain_model',model_dir)
setattr(args,'target_data',target)
setattr(args,'target_batch',target_batch)
# load data
target_loader = eval(f'load_{target}_data')(args,small_sample=1)
# load model
model = AdaPINN(args)
# Firstly, test source model in target domain
true_label,pred_label = model.Test(target_loader['test'])
[MAE, MAPE, MSE, RMSE] = eval_metrix(pred_label, true_label)
print('Before adaptation (source only):')
print('MSE: {:.8f}, MAE: {:.6f}, MAPE: {:.6f}, RMSE: {:.6f}'.format(MSE, MAE, MAPE, RMSE))
if args.log_dir is not None and args.save_folder is not None:
save_name = os.path.join(args.save_folder,args.log_dir)
info = 'Source only: {} -> {} | MSE: {:.8f}, MAE: {:.6f}, MAPE: {:.6f}, RMSE: {:.6f}'.format(source,target,MSE, MAE, MAPE, RMSE)
write_to_txt(save_name,info)
# adaptation
model.Adaptation(trainloader=target_loader['train'],validloader=target_loader['valid'],testloader=target_loader['test'])
def FineTune_TJU2XJTU():
args = get_args()
lrs = [0.0004,0.01,0.0005,0.002,0.003,0.0006]
source_batchs = [2,2,2,1,0,1]
target_batchs = [0,1,2,3,4,5]
for lr,sb,tb in zip(lrs,source_batchs,target_batchs):
for experiment in range(10):
setattr(args,'adaptation_lr',lr)
setattr(args,'log_dir','logging.txt')
setattr(args,'save_folder',f'./results_fine-tuning/TJU-XJTU/batch{tb}/Experiment{experiment}')
one_adaptation_task(args,source='TJU',target='XJTU',source_batch=sb,target_batch=tb)
def FineTune_XJTU2TJU():
args = get_args()
lrs = [0.003,0.002,0.002]
source_batchs = [3,3,2]
target_batchs = [0,1,2]
for lr,sb,tb in zip(lrs,source_batchs,target_batchs):
for experiment in range(10):
setattr(args,'adaptation_lr',lr)
setattr(args,'log_dir','logging.txt')
setattr(args,'save_folder',f'./results_fine-tuning/XJTU-TJU/batch{tb}/Experiment{experiment}')
one_adaptation_task(args,source='XJTU',target='TJU',source_batch=sb,target_batch=tb)
def FineTune_HUST2MIT():
args = get_args()
for experiment in range(10):
setattr(args,'adaptation_lr',0.005)
setattr(args,'log_dir','logging.txt')
setattr(args,'save_folder',f'./results_fine-tuning/HUST-MIT/Experiment{experiment}')
one_adaptation_task(args,source='HUST',target='MIT')
def FineTune_MIT2HUST():
args = get_args()
for experiment in range(10):
setattr(args,'adaptation_lr',0.0002)
setattr(args,'log_dir','logging.txt')
setattr(args,'save_folder',f'./results_fine-tuning/MIT-HUST/Experiment{experiment}')
one_adaptation_task(args,source='MIT',target='HUST')
def FineTune():
args = get_args()
datasets = ['XJTU', 'TJU', 'HUST', 'MIT']
batchs = [0, 2, -1, -1]
for i, source in enumerate(datasets):
for j, target in enumerate(datasets):
if source in ['XJTU', 'TJU'] and target in ['XJTU', 'TJU']:
continue
if source in ['HUST', 'MIT'] and target in ['HUST', 'MIT']:
continue
sb = batchs[i]
tb = batchs[j]
for e in range(10):
setattr(args, 'adaptation_lr', 0.001)
setattr(args, 'log_dir', f'logging.txt')
setattr(args, 'save_folder',
f'./results_fine-tuning/{source}-{target}/Experiment{e + 1}')
one_adaptation_task(args, source=source, target=target, source_batch=sb, target_batch=tb)
if __name__ == '__main__':
# FineTune()
# FineTune_MIT2HUST()
# FineTune_HUST2MIT()
# FineTune_TJU2XJTU()
# FineTune_XJTU2TJU()
pass