forked from yinhaoxs/ImageRetrieval-LSH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinterface.py
255 lines (203 loc) · 7 KB
/
interface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# coding=utf-8
# /usr/bin/env pythpn
'''
Author: yinhao
Email: [email protected]
Wechat: xss_yinhao
Github: http://github.com/yinhaoxs
data: 2019-11-23 21:51
desc:
'''
import torch
from torch.utils.model_zoo import load_url
from torchvision import transforms
from cirtorch.datasets.testdataset import configdataset
from cirtorch.utils.download import download_train, download_test
from cirtorch.utils.evaluate import compute_map_and_print
from cirtorch.utils.general import get_data_root, htime
from cirtorch.networks.imageretrievalnet_cpu import init_network, extract_vectors
from cirtorch.datasets.datahelpers import imresize
from PIL import Image
import numpy as np
import pandas as pd
from flask import Flask, request
import json, io, sys, time, traceback, argparse, logging, subprocess, pickle, os, yaml,shutil
import cv2
import pdb
from werkzeug.utils import cached_property
from apscheduler.schedulers.background import BackgroundScheduler
from multiprocessing import Pool
app = Flask(__name__)
@app.route("/")
def index():
return ""
@app.route("/images/*", methods=['GET','POST'])
def accInsurance():
"""
flask request process handle
:return:
"""
try:
if request.method == 'GET':
return json.dumps({'err': 1, 'msg': 'POST only'})
else:
app.logger.debug("print headers------")
headers = request.headers
headers_info = ""
for k, v in headers.items():
headers_info += "{}: {}\n".format(k, v)
app.logger.debug(headers_info)
app.logger.debug("print forms------")
forms_info = ""
for k, v in request.form.items():
forms_info += "{}: {}\n".format(k, v)
app.logger.debug(forms_info)
if 'query' not in request.files:
return json.dumps({'err': 2, 'msg': 'query image is empty'})
if 'sig' not in request.form:
return json.dumps({'err': 3, 'msg': 'sig is empty'})
if 'q_no' not in request.form:
return json.dumps({'err': 4, 'msg': 'no is empty'})
if 'q_did' not in request.form:
return json.dumps({'err': 5, 'msg': 'did is empty'})
if 'q_id' not in request.form:
return json.dumps({'err': 6, 'msg': 'id is empty'})
if 'type' not in request.form:
return json.dumps({'err': 7, 'msg': 'type is empty'})
img_name = request.files['query'].filename
img_bytes = request.files['query'].read()
img = request.files['query']
sig = request.form['sig']
q_no = request.form['q_no']
q_did = request.form['q_did']
q_id = request.form['q_id']
type = request.form['type']
if str(type) not in types:
return json.dumps({'err': 8, 'msg': 'type is not exist'})
if img_bytes is None:
return json.dumps({'err': 10, 'msg': 'img is none'})
results = imageRetrieval().retrieval_online_v0(img, q_no, q_did, q_id, type)
data = dict()
data['query'] = img_name
data['sig'] = sig
data['type'] = type
data['q_no'] = q_no
data['q_did'] = q_did
data['q_id'] = q_id
data['results'] = results
return json.dumps({'err': 0, 'msg': 'success', 'data': data})
except:
app.logger.exception(sys.exc_info())
return json.dumps({'err': 9, 'msg': 'unknow error'})
class imageRetrieval():
def __init__(self):
pass
def cosine_dist(self, x, y):
return 100 * float(np.dot(x, y))/(np.dot(x,x)*np.dot(y,y)) ** 0.5
def inference(self, img):
try:
input = Image.open(img).convert("RGB")
input = imresize(input, 224)
input = transforms(input).unsqueeze()
with torch.no_grad():
vect = net(input)
return vect
except:
print('cannot indentify error')
def retrieval_online_v0(self, img, q_no, q_did, q_id, type):
# load model
query_vect = self.inference(img)
query_vect = list(query_vect.detach().numpy().T[0])
lsh = lsh_dict[str(type)]
response = lsh.query(query_vect, num_results=1, distance_func = "cosine")
try:
similar_path = response[0][0][1]
score = np.rint(self.cosine_dist(list(query_vect), list(response[0][0][0])))
rank_list = similar_path.split("/")
s_id, s_did, s_no = rank_list[-1].split("_")[-1].split(".")[0], rank_list[-1].split("_")[0], rank_list[-2]
results = [{"s_no": s_no, "r_did": s_did, "s_id": s_id, "score": score}]
except:
results = []
img_path = "/{}/{}_{}".format(q_no, q_did, q_id)
lsh.index(query_vect, extra_data=img_path)
lsh_dict[str(type)] = lsh
return results
class initModel():
def __init__(self):
pass
def init_model(self, network, model_dir, types):
print(">> Loading network:\n>>>> '{}'".format(network))
# state = load_url(PRETRAINED[args.network], model_dir=os.path.join(get_data_root(), 'networks'))
state = torch.load(network)
# parsing net params from meta
# architecture, pooling, mean, std required
# the rest has default values, in case that is doesnt exist
net_params = {}
net_params['architecture'] = state['meta']['architecture']
net_params['pooling'] = state['meta']['pooling']
net_params['local_whitening'] = state['meta'].get('local_whitening', False)
net_params['regional'] = state['meta'].get('regional', False)
net_params['whitening'] = state['meta'].get('whitening', False)
net_params['mean'] = state['meta']['mean']
net_params['std'] = state['meta']['std']
net_params['pretrained'] = False
# network initialization
net = init_network(net_params)
net.load_state_dict(state['state_dict'])
print(">>>> loaded network: ")
print(net.meta_repr())
# moving network to gpu and eval mode
# net.cuda()
net.eval()
# set up the transform
normalize = transforms.Normalize(
mean=net.meta['mean'],
std=net.meta['std']
)
transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
lsh_dict = dict()
for type in types:
with open(os.path.join(model_dir, "dataset_index_{}.pkl".format(str(type))), "rb") as f:
lsh = pickle.load(f)
lsh_dict[str(type)] = lsh
return net, lsh_dict, transforms
def init(self):
with open('config.yaml', 'r') as f:
conf = yaml.load(f)
app.logger.info(conf)
host = conf['website']['host']
port = conf['website']['port']
network = conf['model']['network']
model_dir = conf['model']['model_dir']
types = conf['model']['type']
net, lsh_dict, transforms = self.init_model(network, model_dir, types)
return host, port, net, lsh_dict, transforms, model_dir, types
def job():
for type in types:
with open(os.path.join(model_dir, "dataset_index_{}_v0.pkl".format(str(type))), "wb") as f:
pickle.dump(lsh_dict[str(type)], f)
if __name__ == "__main__":
"""
start app from ssh
"""
scheduler = BackgroundScheduler()
host, port, net, lsh_dict, transforms, model_dir, types = initModel().init()
app.run(host=host, port=port, debug=True)
print("start server {}:{}".format(host, port))
scheduler.add_job(job, 'interval', seconds= 30)
scheduler.start()
else:
"""
start app from gunicorn
"""
scheduler = BackgroundScheduler()
gunicorn_logger = logging.getLogger("gunicorn.error")
app.logger.handlers = gunicorn_logger.handlers
app.logger.setLevel(gunicorn_logger.level)
host, port, net, lsh_dict, transforms, model_dir, types = initModel().init()
app.logger.info("started from gunicorn...")
scheduler.add_job(job, 'interval', seconds=30)
scheduler.start()