forked from hpcaitech/Open-Sora
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_vae.py
391 lines (349 loc) · 16.2 KB
/
train_vae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import os
import random
from datetime import timedelta
from pprint import pformat
import torch
import torch.distributed as dist
import wandb
from colossalai.booster import Booster
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device, set_seed
from einops import rearrange
from tqdm import tqdm
from opensora.acceleration.checkpoint import set_grad_checkpoint
from opensora.acceleration.parallel_states import get_data_parallel_group
from opensora.datasets.dataloader import prepare_dataloader
from opensora.models.vae.losses import AdversarialLoss, DiscriminatorLoss, VAELoss
from opensora.registry import DATASETS, MODELS, build_module
from opensora.utils.ckpt_utils import load, save
from opensora.utils.config_utils import define_experiment_workspace, parse_configs, save_training_config
from opensora.utils.misc import (
all_reduce_mean,
create_logger,
create_tensorboard_writer,
format_numel_str,
get_model_numel,
to_torch_dtype,
)
from opensora.utils.train_utils import create_colossalai_plugin
def main():
# ======================================================
# 1. configs & runtime variables
# ======================================================
# == parse configs ==
cfg = parse_configs(training=True)
# == device and dtype ==
assert torch.cuda.is_available(), "Training currently requires at least one GPU."
cfg_dtype = cfg.get("dtype", "bf16")
assert cfg_dtype in ["fp16", "bf16"], f"Unknown mixed precision {cfg_dtype}"
dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
# == colossalai init distributed training ==
# NOTE: A very large timeout is set to avoid some processes exit early
dist.init_process_group(backend="nccl", timeout=timedelta(hours=24))
torch.cuda.set_device(dist.get_rank() % torch.cuda.device_count())
set_seed(cfg.get("seed", 1024))
coordinator = DistCoordinator()
device = get_current_device()
# == init exp_dir ==
exp_name, exp_dir = define_experiment_workspace(cfg)
coordinator.block_all()
if coordinator.is_master():
os.makedirs(exp_dir, exist_ok=True)
save_training_config(cfg.to_dict(), exp_dir)
coordinator.block_all()
# == init logger, tensorboard & wandb ==
logger = create_logger(exp_dir)
logger.info("Experiment directory created at %s", exp_dir)
logger.info("Training configuration:\n %s", pformat(cfg.to_dict()))
if coordinator.is_master():
tb_writer = create_tensorboard_writer(exp_dir)
if cfg.get("wandb", False):
wandb.init(project="minisora", name=exp_name, config=cfg.to_dict(), dir="./outputs/wandb")
# == init ColossalAI booster ==
plugin = create_colossalai_plugin(
plugin=cfg.get("plugin", "zero2"),
dtype=cfg_dtype,
grad_clip=cfg.get("grad_clip", 0),
sp_size=cfg.get("sp_size", 1),
)
booster = Booster(plugin=plugin)
# ======================================================
# 2. build dataset and dataloader
# ======================================================
logger.info("Building dataset...")
# == build dataset ==
assert cfg.dataset.type == "VideoTextDataset", "Only support VideoTextDataset for vae training"
dataset = build_module(cfg.dataset, DATASETS)
logger.info("Dataset contains %s samples.", len(dataset))
# == build dataloader ==
dataloader_args = dict(
dataset=dataset,
batch_size=cfg.batch_size,
num_workers=cfg.get("num_workers", 4),
seed=cfg.get("seed", 1024),
shuffle=True,
drop_last=True,
pin_memory=True,
process_group=get_data_parallel_group(),
)
dataloader, sampler = prepare_dataloader(**dataloader_args)
total_batch_size = cfg.batch_size * dist.get_world_size() // cfg.get("sp_size", 1)
logger.info("Total batch size: %s", total_batch_size)
num_steps_per_epoch = len(dataloader)
# ======================================================
# 3. build model
# ======================================================
logger.info("Building models...")
# == build vae model ==
model = build_module(cfg.model, MODELS).to(device, dtype).train()
model_numel, model_numel_trainable = get_model_numel(model)
logger.info(
"[VAE] Trainable model params: %s, Total model params: %s",
format_numel_str(model_numel_trainable),
format_numel_str(model_numel),
)
# == build discriminator model ==
use_discriminator = cfg.get("discriminator", None) is not None
if use_discriminator:
discriminator = build_module(cfg.discriminator, MODELS).to(device, dtype).train()
discriminator_numel, discriminator_numel_trainable = get_model_numel(discriminator)
logger.info(
"[Discriminator] Trainable model params: %s, Total model params: %s",
format_numel_str(discriminator_numel_trainable),
format_numel_str(discriminator_numel),
)
# == setup loss functions ==
vae_loss_fn = VAELoss(
logvar_init=cfg.get("logvar_init", 0.0),
perceptual_loss_weight=cfg.get("perceptual_loss_weight", 0.1),
kl_loss_weight=cfg.get("kl_loss_weight", 1e-6),
device=device,
dtype=dtype,
)
if use_discriminator:
adversarial_loss_fn = AdversarialLoss(
discriminator_factor=cfg.get("discriminator_factor", 1),
discriminator_start=cfg.get("discriminator_start", -1),
generator_factor=cfg.get("generator_factor", 0.5),
generator_loss_type=cfg.get("generator_loss_type", "hinge"),
)
disc_loss_fn = DiscriminatorLoss(
discriminator_factor=cfg.get("discriminator_factor", 1),
discriminator_start=cfg.get("discriminator_start", -1),
discriminator_loss_type=cfg.get("discriminator_loss_type", "hinge"),
lecam_loss_weight=cfg.get("lecam_loss_weight", None),
gradient_penalty_loss_weight=cfg.get("gradient_penalty_loss_weight", None),
)
# == setup vae optimizer ==
optimizer = HybridAdam(
filter(lambda p: p.requires_grad, model.parameters()),
adamw_mode=True,
lr=cfg.get("lr", 1e-5),
weight_decay=cfg.get("weight_decay", 0),
)
lr_scheduler = None
# == setup discriminator optimizer ==
if use_discriminator:
disc_optimizer = HybridAdam(
filter(lambda p: p.requires_grad, discriminator.parameters()),
adamw_mode=True,
lr=cfg.get("lr", 1e-5),
weight_decay=cfg.get("weight_decay", 0),
)
disc_lr_scheduler = None
# == additional preparation ==
if cfg.get("grad_checkpoint", False):
set_grad_checkpoint(model)
# =======================================================
# 4. distributed training preparation with colossalai
# =======================================================
logger.info("Preparing for distributed training...")
# == boosting ==
# NOTE: we set dtype first to make initialization of model consistent with the dtype; then reset it to the fp32 as we make diffusion scheduler in fp32
torch.set_default_dtype(dtype)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
dataloader=dataloader,
)
if use_discriminator:
discriminator, disc_optimizer, _, _, disc_lr_scheduler = booster.boost(
model=discriminator,
optimizer=disc_optimizer,
lr_scheduler=disc_lr_scheduler,
)
torch.set_default_dtype(torch.float)
logger.info("Boosting model for distributed training")
# == global variables ==
cfg_epochs = cfg.get("epochs", 1000)
start_epoch = start_step = log_step = sampler_start_idx = acc_step = 0
running_loss = running_disc_loss = 0.0
logger.info("Training for %s epochs with %s steps per epoch", cfg_epochs, num_steps_per_epoch)
# == resume ==
if cfg.get("load", None) is not None:
logger.info("Loading checkpoint")
start_epoch, start_step = load(
booster,
cfg.load,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
sampler=sampler,
)
if use_discriminator and os.path.exists(os.path.join(cfg.load, "discriminator")):
booster.load_model(discriminator, os.path.join(cfg.load, "discriminator"))
booster.load_optimizer(disc_optimizer, os.path.join(cfg.load, "disc_optimizer"))
dist.barrier()
logger.info("Loaded checkpoint %s at epoch %s step %s", cfg.load, start_epoch, start_step)
# =======================================================
# 5. training loop
# =======================================================
dist.barrier()
for epoch in range(start_epoch, cfg_epochs):
# == set dataloader to new epoch ==
sampler.set_epoch(epoch)
dataiter = iter(dataloader)
logger.info("Beginning epoch %s...", epoch)
# == training loop in an epoch ==
with tqdm(
enumerate(dataiter, start=start_step),
desc=f"Epoch {epoch}",
disable=not coordinator.is_master(),
total=num_steps_per_epoch,
initial=start_step,
) as pbar:
for step, batch in pbar:
x = batch["video"].to(device, dtype) # [B, C, T, H, W]
# == mixed training setting ==
mixed_strategy = cfg.get("mixed_strategy", None)
if mixed_strategy == "mixed_video_image":
if random.random() < cfg.get("mixed_image_ratio", 0.0):
x = x[:, :, :1, :, :]
elif mixed_strategy == "mixed_video_random":
length = random.randint(1, x.size(2))
x = x[:, :, :length, :, :]
# == vae encoding & decoding ===
x_rec, x_z_rec, z, posterior, x_z = model(x)
# == loss initialization ==
vae_loss = torch.tensor(0.0, device=device, dtype=dtype)
disc_loss = torch.tensor(0.0, device=device, dtype=dtype)
log_dict = {}
# == loss: real image reconstruction ==
nll_loss, weighted_nll_loss, weighted_kl_loss = vae_loss_fn(x, x_rec, posterior)
log_dict["kl_loss"] = weighted_kl_loss.item()
log_dict["nll_loss"] = weighted_nll_loss.item()
if cfg.get("use_real_rec_loss", False):
vae_loss += weighted_nll_loss + weighted_kl_loss
# == loss: temporal vae reconstruction ==
_, weighted_z_nll_loss, _ = vae_loss_fn(x_z, x_z_rec, posterior, no_perceptual=True)
log_dict["z_nll_loss"] = weighted_z_nll_loss.item()
if cfg.get("use_z_rec_loss", False):
vae_loss += weighted_z_nll_loss
# == loss: image only distillation ==
if cfg.get("use_image_identity_loss", False) and x.size(2) == 1:
_, image_identity_loss, _ = vae_loss_fn(x_z, z, posterior, no_perceptual=True)
vae_loss += image_identity_loss
log_dict["image_identity_loss"] = image_identity_loss.item()
# == loss: generator adversarial ==
if use_discriminator:
recon_video = rearrange(x_rec, "b c t h w -> (b t) c h w").contiguous()
global_step = epoch * num_steps_per_epoch + step
fake_logits = discriminator(recon_video.contiguous())
adversarial_loss = adversarial_loss_fn(
fake_logits,
nll_loss,
model.module.get_temporal_last_layer(),
global_step,
is_training=model.training,
)
log_dict["adversarial_loss"] = adversarial_loss.item()
vae_loss += adversarial_loss
# == generator backward & update ==
optimizer.zero_grad()
booster.backward(loss=vae_loss, optimizer=optimizer)
optimizer.step()
all_reduce_mean(vae_loss)
running_loss += vae_loss.item()
# == loss: discriminator adversarial ==
if use_discriminator:
real_video = rearrange(x, "b c t h w -> (b t) c h w").contiguous()
fake_video = rearrange(x_rec, "b c t h w -> (b t) c h w").contiguous()
real_logits = discriminator(real_video.contiguous().detach())
fake_logits = discriminator(fake_video.contiguous().detach())
weighted_d_adversarial_loss, _, _ = disc_loss_fn(
real_logits,
fake_logits,
global_step,
)
disc_loss = weighted_d_adversarial_loss
log_dict["disc_loss"] = disc_loss.item()
# == discriminator backward & update ==
disc_optimizer.zero_grad()
booster.backward(loss=disc_loss, optimizer=disc_optimizer)
disc_optimizer.step()
all_reduce_mean(disc_loss)
running_disc_loss += disc_loss.item()
# == update log info ==
global_step = epoch * num_steps_per_epoch + step
log_step += 1
acc_step += 1
# == logging ==
if coordinator.is_master() and (global_step + 1) % cfg.get("log_every", 1) == 0:
avg_loss = running_loss / log_step
avg_disc_loss = running_disc_loss / log_step
# progress bar
pbar.set_postfix(
{"loss": avg_loss, "disc_loss": avg_disc_loss, "step": step, "global_step": global_step}
)
# tensorboard
tb_writer.add_scalar("loss", vae_loss.item(), global_step)
# wandb
if cfg.wandb:
wandb.log(
{
"iter": global_step,
"num_samples": global_step * total_batch_size,
"epoch": epoch,
"loss": vae_loss.item(),
"avg_loss": avg_loss,
**log_dict,
},
step=global_step,
)
running_loss = running_disc_loss = 0.0
log_step = 0
# == checkpoint saving ==
ckpt_every = cfg.get("ckpt_every", 0)
if ckpt_every > 0 and (global_step + 1) % ckpt_every == 0:
save(
booster,
exp_dir,
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
epoch=epoch,
step=step + 1,
global_step=global_step + 1,
batch_size=cfg.get("batch_size", None),
sampler=sampler,
)
save_dir = os.path.join(exp_dir, f"epoch{epoch}-global_step{global_step+1}")
if use_discriminator:
booster.save_model(discriminator, os.path.join(save_dir, "discriminator"), shard=True)
booster.save_optimizer(
disc_optimizer, os.path.join(save_dir, "disc_optimizer"), shard=True, size_per_shard=4096
)
dist.barrier()
logger.info(
"Saved checkpoint at epoch %s step %s global_step %s to %s",
epoch,
step + 1,
global_step + 1,
exp_dir,
)
sampler.reset()
start_step = 0
if __name__ == "__main__":
main()