-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy patharg_parser.py
149 lines (143 loc) · 5.63 KB
/
arg_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="PyTorch Lottery Tickets Experiments")
##################################### Dataset #################################################
parser.add_argument(
"--data", type=str, default="../data", help="location of the data corpus"
)
parser.add_argument("--dataset", type=str, default="cifar10", help="dataset")
parser.add_argument(
"--input_size", type=int, default=32, help="size of input images"
)
parser.add_argument(
"--data_dir",
type=str,
default="./tiny-imagenet-200",
help="dir to tiny-imagenet",
)
parser.add_argument("--num_workers", type=int, default=4)
parser.add_argument("--num_classes", type=int, default=10)
##################################### Architecture ############################################
parser.add_argument(
"--arch", type=str, default="resnet18", help="model architecture"
)
parser.add_argument(
"--imagenet_arch",
action="store_true",
help="architecture for imagenet size samples",
)
parser.add_argument(
"--train_y_file",
type=str,
default="./labels/train_ys.pth",
help="labels for training files",
)
parser.add_argument(
"--val_y_file",
type=str,
default="./labels/val_ys.pth",
help="labels for validation files",
)
##################################### General setting ############################################
parser.add_argument("--seed", default=2, type=int, help="random seed")
parser.add_argument(
"--train_seed",
default=1,
type=int,
help="seed for training (default value same as args.seed)",
)
parser.add_argument("--gpu", type=int, default=0, help="gpu device id")
parser.add_argument(
"--workers", type=int, default=4, help="number of workers in dataloader"
)
parser.add_argument("--resume", action="store_true", help="resume from checkpoint")
parser.add_argument("--checkpoint", type=str, default=None, help="checkpoint file")
parser.add_argument(
"--save_dir",
help="The directory used to save the trained models",
default=None,
type=str,
)
parser.add_argument("--mask", type=str, default=None, help="sparse model")
##################################### Training setting #################################################
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--lr", default=0.1, type=float, help="initial learning rate")
parser.add_argument("--momentum", default=0.9, type=float, help="momentum")
parser.add_argument("--weight_decay", default=5e-4, type=float, help="weight decay")
parser.add_argument(
"--epochs", default=182, type=int, help="number of total epochs to run"
)
parser.add_argument("--warmup", default=0, type=int, help="warm up epochs")
parser.add_argument("--print_freq", default=50, type=int, help="print frequency")
parser.add_argument("--decreasing_lr", default="91,136", help="decreasing strategy")
parser.add_argument(
"--no-aug",
action="store_true",
default=False,
help="No augmentation in training dataset (transformation).",
)
parser.add_argument("--no-l1-epochs", default=0, type=int, help="non l1 epochs")
##################################### Pruning setting #################################################
parser.add_argument("--prune", type=str, default="omp", help="method to prune")
parser.add_argument(
"--pruning_times",
default=1,
type=int,
help="overall times of pruning (only works for IMP)",
)
parser.add_argument(
"--rate", default=0.95, type=float, help="pruning rate"
) # pruning rate is always 20%
parser.add_argument(
"--prune_type",
default="rewind_lt",
type=str,
help="IMP type (lt, pt or rewind_lt)",
)
parser.add_argument(
"--random_prune", action="store_true", help="whether using random prune"
)
parser.add_argument("--rewind_epoch", default=0, type=int, help="rewind checkpoint")
parser.add_argument(
"--rewind_pth", default=None, type=str, help="rewind checkpoint to load"
)
##################################### Unlearn setting #################################################
parser.add_argument(
"--unlearn", type=str, default="retrain", help="method to unlearn"
)
parser.add_argument(
"--unlearn_lr", default=0.01, type=float, help="initial learning rate"
)
parser.add_argument(
"--unlearn_epochs",
default=10,
type=int,
help="number of total epochs for unlearn to run",
)
parser.add_argument(
"--num_indexes_to_replace",
type=int,
default=None,
help="Number of data to forget",
)
parser.add_argument(
"--class_to_replace", type=int, default=0, help="Specific class to forget"
)
parser.add_argument(
"--indexes_to_replace",
type=list,
default=None,
help="Specific index data to forget",
)
parser.add_argument("--alpha", default=0.2, type=float, help="unlearn noise")
##################################### Attack setting #################################################
parser.add_argument(
"--attack", type=str, default="backdoor", help="method to unlearn"
)
parser.add_argument(
"--trigger_size",
type=int,
default=4,
help="The size of trigger of backdoor attack",
)
return parser.parse_args()