forked from burness/tensorflow-101
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_upgrade.py
665 lines (597 loc) · 24.8 KB
/
tf_upgrade.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Upgrader for Python scripts from pre-1.0 TensorFlow to 1.0 TensorFlow."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import ast
import collections
import os
import shutil
import sys
import tempfile
import traceback
class APIChangeSpec(object):
"""List of maps that describe what changed in the API."""
def __init__(self):
# Maps from a function name to a dictionary that describes how to
# map from an old argument keyword to the new argument keyword.
self.function_keyword_renames = {
"tf.count_nonzero": {
"reduction_indices": "axis"
},
"tf.reduce_all": {
"reduction_indices": "axis"
},
"tf.reduce_any": {
"reduction_indices": "axis"
},
"tf.reduce_max": {
"reduction_indices": "axis"
},
"tf.reduce_mean": {
"reduction_indices": "axis"
},
"tf.reduce_min": {
"reduction_indices": "axis"
},
"tf.reduce_prod": {
"reduction_indices": "axis"
},
"tf.reduce_sum": {
"reduction_indices": "axis"
},
"tf.reduce_logsumexp": {
"reduction_indices": "axis"
},
"tf.expand_dims": {
"dim": "axis"
},
"tf.argmax": {
"dimension": "axis"
},
"tf.argmin": {
"dimension": "axis"
},
"tf.reduce_join": {
"reduction_indices": "axis"
},
"tf.sparse_concat": {
"concat_dim": "axis"
},
"tf.sparse_split": {
"split_dim": "axis"
},
"tf.sparse_reduce_sum": {
"reduction_axes": "axis"
},
"tf.reverse_sequence": {
"seq_dim": "seq_axis",
"batch_dim": "batch_axis"
},
"tf.sparse_reduce_sum_sparse": {
"reduction_axes": "axis"
},
"tf.squeeze": {
"squeeze_dims": "axis"
},
"tf.split": {
"split_dim": "axis",
"num_split": "num_or_size_splits"
},
"tf.concat": {
"concat_dim": "axis"
},
}
# Mapping from function to the new name of the function
self.function_renames = {
"tf.inv": "tf.reciprocal",
"tf.contrib.deprecated.scalar_summary": "tf.summary.scalar",
"tf.contrib.deprecated.histogram_summary": "tf.summary.histogram",
"tf.listdiff": "tf.setdiff1d",
"tf.list_diff": "tf.setdiff1d",
"tf.mul": "tf.multiply",
"tf.neg": "tf.negative",
"tf.sub": "tf.subtract",
"tf.train.SummaryWriter": "tf.summary.FileWriter",
"tf.scalar_summary": "tf.summary.scalar",
"tf.histogram_summary": "tf.summary.histogram",
"tf.audio_summary": "tf.summary.audio",
"tf.image_summary": "tf.summary.image",
"tf.merge_summary": "tf.summary.merge",
"tf.merge_all_summaries": "tf.summary.merge_all",
"tf.image.per_image_whitening": "tf.image.per_image_standardization",
"tf.all_variables": "tf.global_variables",
"tf.VARIABLES": "tf.GLOBAL_VARIABLES",
"tf.initialize_all_variables": "tf.global_variables_initializer",
"tf.initialize_variables": "tf.variables_initializer",
"tf.initialize_local_variables": "tf.local_variables_initializer",
"tf.batch_matrix_diag": "tf.matrix_diag",
"tf.batch_band_part": "tf.band_part",
"tf.batch_set_diag": "tf.set_diag",
"tf.batch_matrix_transpose": "tf.matrix_transpose",
"tf.batch_matrix_determinant": "tf.matrix_determinant",
"tf.batch_matrix_inverse": "tf.matrix_inverse",
"tf.batch_cholesky": "tf.cholesky",
"tf.batch_cholesky_solve": "tf.cholesky_solve",
"tf.batch_matrix_solve": "tf.matrix_solve",
"tf.batch_matrix_triangular_solve": "tf.matrix_triangular_solve",
"tf.batch_matrix_solve_ls": "tf.matrix_solve_ls",
"tf.batch_self_adjoint_eig": "tf.self_adjoint_eig",
"tf.batch_self_adjoint_eigvals": "tf.self_adjoint_eigvals",
"tf.batch_svd": "tf.svd",
"tf.batch_fft": "tf.fft",
"tf.batch_ifft": "tf.ifft",
"tf.batch_ifft2d": "tf.ifft2d",
"tf.batch_fft3d": "tf.fft3d",
"tf.batch_ifft3d": "tf.ifft3d",
"tf.select": "tf.where",
"tf.complex_abs": "tf.abs",
"tf.batch_matmul": "tf.matmul",
"tf.pack": "tf.stack",
"tf.unpack": "tf.unstack",
}
self.change_to_function = {
"tf.ones_initializer",
"tf.zeros_initializer",
}
# Functions that were reordered should be changed to the new keyword args
# for safety, if positional arguments are used. If you have reversed the
# positional arguments yourself, this could do the wrong thing.
self.function_reorders = {
"tf.split": ["axis", "num_or_size_splits", "value", "name"],
"tf.sparse_split": ["axis", "num_or_size_splits", "value", "name"],
"tf.concat": ["concat_dim", "values", "name"],
"tf.svd": ["tensor", "compute_uv", "full_matrices", "name"],
"tf.nn.softmax_cross_entropy_with_logits": [
"logits", "labels", "dim", "name"],
"tf.nn.sparse_softmax_cross_entropy_with_logits": [
"logits", "labels", "name"],
"tf.nn.sigmoid_cross_entropy_with_logits": [
"logits", "labels", "name"]
}
# Specially handled functions.
self.function_handle = {"tf.reverse": self._reverse_handler}
@staticmethod
def _reverse_handler(file_edit_recorder, node):
# TODO(aselle): Could check for a literal list of bools and try to convert
# them to indices.
comment = ("ERROR: tf.reverse has had its argument semantics changed\n"
"significantly the converter cannot detect this reliably, so you"
"need to inspect this usage manually.\n")
file_edit_recorder.add(comment,
node.lineno,
node.col_offset,
"tf.reverse",
"tf.reverse",
error="tf.reverse requires manual check.")
class FileEditTuple(collections.namedtuple(
"FileEditTuple", ["comment", "line", "start", "old", "new"])):
"""Each edit that is recorded by a FileEditRecorder.
Fields:
comment: A description of the edit and why it was made.
line: The line number in the file where the edit occurs (1-indexed).
start: The line number in the file where the edit occurs (0-indexed).
old: text string to remove (this must match what was in file).
new: text string to add in place of `old`.
"""
__slots__ = ()
class FileEditRecorder(object):
"""Record changes that need to be done to the file."""
def __init__(self, filename):
# all edits are lists of chars
self._filename = filename
self._line_to_edit = collections.defaultdict(list)
self._errors = []
def process(self, text):
"""Process a list of strings, each corresponding to the recorded changes.
Args:
text: A list of lines of text (assumed to contain newlines)
Returns:
A tuple of the modified text and a textual description of what is done.
Raises:
ValueError: if substitution source location does not have expected text.
"""
change_report = ""
# Iterate of each line
for line, edits in self._line_to_edit.items():
offset = 0
# sort by column so that edits are processed in order in order to make
# indexing adjustments cumulative for changes that change the string
# length
edits.sort(key=lambda x: x.start)
# Extract each line to a list of characters, because mutable lists
# are editable, unlike immutable strings.
char_array = list(text[line - 1])
# Record a description of the change
change_report += "%r Line %d\n" % (self._filename, line)
change_report += "-" * 80 + "\n\n"
for e in edits:
change_report += "%s\n" % e.comment
change_report += "\n Old: %s" % (text[line - 1])
# Make underscore buffers for underlining where in the line the edit was
change_list = [" "] * len(text[line - 1])
change_list_new = [" "] * len(text[line - 1])
# Iterate for each edit
for e in edits:
# Create effective start, end by accounting for change in length due
# to previous edits
start_eff = e.start + offset
end_eff = start_eff + len(e.old)
# Make sure the edit is changing what it should be changing
old_actual = "".join(char_array[start_eff:end_eff])
if old_actual != e.old:
raise ValueError("Expected text %r but got %r" %
("".join(e.old), "".join(old_actual)))
# Make the edit
char_array[start_eff:end_eff] = list(e.new)
# Create the underline highlighting of the before and after
change_list[e.start:e.start + len(e.old)] = "~" * len(e.old)
change_list_new[start_eff:end_eff] = "~" * len(e.new)
# Keep track of how to generate effective ranges
offset += len(e.new) - len(e.old)
# Finish the report comment
change_report += " %s\n" % "".join(change_list)
text[line - 1] = "".join(char_array)
change_report += " New: %s" % (text[line - 1])
change_report += " %s\n\n" % "".join(change_list_new)
return "".join(text), change_report, self._errors
def add(self, comment, line, start, old, new, error=None):
"""Add a new change that is needed.
Args:
comment: A description of what was changed
line: Line number (1 indexed)
start: Column offset (0 indexed)
old: old text
new: new text
error: this "edit" is something that cannot be fixed automatically
Returns:
None
"""
self._line_to_edit[line].append(
FileEditTuple(comment, line, start, old, new))
if error:
self._errors.append("%s:%d: %s" % (self._filename, line, error))
class TensorFlowCallVisitor(ast.NodeVisitor):
"""AST Visitor that finds TensorFlow Function calls.
Updates function calls from old API version to new API version.
"""
def __init__(self, filename, lines):
self._filename = filename
self._file_edit = FileEditRecorder(filename)
self._lines = lines
self._api_change_spec = APIChangeSpec()
def process(self, lines):
return self._file_edit.process(lines)
def generic_visit(self, node):
ast.NodeVisitor.generic_visit(self, node)
def _rename_functions(self, node, full_name):
function_renames = self._api_change_spec.function_renames
try:
new_name = function_renames[full_name]
self._file_edit.add("Renamed function %r to %r" % (full_name,
new_name),
node.lineno, node.col_offset, full_name, new_name)
except KeyError:
pass
def _get_attribute_full_path(self, node):
"""Traverse an attribute to generate a full name e.g. tf.foo.bar.
Args:
node: A Node of type Attribute.
Returns:
a '.'-delimited full-name or None if the tree was not a simple form.
i.e. `foo()+b).bar` returns None, while `a.b.c` would return "a.b.c".
"""
curr = node
items = []
while not isinstance(curr, ast.Name):
if not isinstance(curr, ast.Attribute):
return None
items.append(curr.attr)
curr = curr.value
items.append(curr.id)
return ".".join(reversed(items))
def _find_true_position(self, node):
"""Return correct line number and column offset for a given node.
This is necessary mainly because ListComp's location reporting reports
the next token after the list comprehension list opening.
Args:
node: Node for which we wish to know the lineno and col_offset
"""
import re
find_open = re.compile("^\s*(\\[).*$")
find_string_chars = re.compile("['\"]")
if isinstance(node, ast.ListComp):
# Strangely, ast.ListComp returns the col_offset of the first token
# after the '[' token which appears to be a bug. Workaround by
# explicitly finding the real start of the list comprehension.
line = node.lineno
col = node.col_offset
# loop over lines
while 1:
# Reverse the text to and regular expression search for whitespace
text = self._lines[line-1]
reversed_preceding_text = text[:col][::-1]
# First find if a [ can be found with only whitespace between it and
# col.
m = find_open.match(reversed_preceding_text)
if m:
new_col_offset = col - m.start(1) - 1
return line, new_col_offset
else:
if (reversed_preceding_text=="" or
reversed_preceding_text.isspace()):
line = line - 1
prev_line = self._lines[line - 1]
# TODO(aselle):
# this is poor comment detection, but it is good enough for
# cases where the comment does not contain string literal starting/
# ending characters. If ast gave us start and end locations of the
# ast nodes rather than just start, we could use string literal
# node ranges to filter out spurious #'s that appear in string
# literals.
comment_start = prev_line.find("#")
if comment_start == -1:
col = len(prev_line) -1
elif find_string_chars.search(prev_line[comment_start:]) is None:
col = comment_start
else:
return None, None
else:
return None, None
# Most other nodes return proper locations (with notably does not), but
# it is not possible to use that in an argument.
return node.lineno, node.col_offset
def visit_Call(self, node): # pylint: disable=invalid-name
"""Handle visiting a call node in the AST.
Args:
node: Current Node
"""
# Find a simple attribute name path e.g. "tf.foo.bar"
full_name = self._get_attribute_full_path(node.func)
# Make sure the func is marked as being part of a call
node.func.is_function_for_call = True
if full_name and full_name.startswith("tf."):
# Call special handlers
function_handles = self._api_change_spec.function_handle
if full_name in function_handles:
function_handles[full_name](self._file_edit, node)
# Examine any non-keyword argument and make it into a keyword argument
# if reordering required.
function_reorders = self._api_change_spec.function_reorders
function_keyword_renames = (
self._api_change_spec.function_keyword_renames)
if full_name in function_reorders:
reordered = function_reorders[full_name]
for idx, arg in enumerate(node.args):
lineno, col_offset = self._find_true_position(arg)
if lineno is None or col_offset is None:
self._file_edit.add(
"Failed to add keyword %r to reordered function %r"
% (reordered[idx], full_name), arg.lineno, arg.col_offset,
"", "",
error="A necessary keyword argument failed to be inserted.")
else:
keyword_arg = reordered[idx]
if (full_name in function_keyword_renames and
keyword_arg in function_keyword_renames[full_name]):
keyword_arg = function_keyword_renames[full_name][keyword_arg]
self._file_edit.add("Added keyword %r to reordered function %r"
% (reordered[idx], full_name), lineno,
col_offset, "", keyword_arg + "=")
# Examine each keyword argument and convert it to the final renamed form
renamed_keywords = ({} if full_name not in function_keyword_renames else
function_keyword_renames[full_name])
for keyword in node.keywords:
argkey = keyword.arg
argval = keyword.value
if argkey in renamed_keywords:
argval_lineno, argval_col_offset = self._find_true_position(argval)
if (argval_lineno is not None and argval_col_offset is not None):
# TODO(aselle): We should scan backward to find the start of the
# keyword key. Unfortunately ast does not give you the location of
# keyword keys, so we are forced to infer it from the keyword arg
# value.
key_start = argval_col_offset - len(argkey) - 1
key_end = key_start + len(argkey) + 1
if self._lines[argval_lineno - 1][key_start:key_end] == argkey + "=":
self._file_edit.add("Renamed keyword argument from %r to %r" %
(argkey, renamed_keywords[argkey]),
argval_lineno,
argval_col_offset - len(argkey) - 1,
argkey + "=", renamed_keywords[argkey] + "=")
continue
self._file_edit.add(
"Failed to rename keyword argument from %r to %r" %
(argkey, renamed_keywords[argkey]),
argval.lineno,
argval.col_offset - len(argkey) - 1,
"", "",
error="Failed to find keyword lexographically. Fix manually.")
ast.NodeVisitor.generic_visit(self, node)
def visit_Attribute(self, node): # pylint: disable=invalid-name
"""Handle bare Attributes i.e. [tf.foo, tf.bar].
Args:
node: Node that is of type ast.Attribute
"""
full_name = self._get_attribute_full_path(node)
if full_name and full_name.startswith("tf."):
self._rename_functions(node, full_name)
if full_name in self._api_change_spec.change_to_function:
if not hasattr(node, "is_function_for_call"):
new_text = full_name + "()"
self._file_edit.add("Changed %r to %r"%(full_name, new_text),
node.lineno, node.col_offset, full_name, new_text)
ast.NodeVisitor.generic_visit(self, node)
class TensorFlowCodeUpgrader(object):
"""Class that handles upgrading a set of Python files to TensorFlow 1.0."""
def __init__(self):
pass
def process_file(self, in_filename, out_filename):
"""Process the given python file for incompatible changes.
Args:
in_filename: filename to parse
out_filename: output file to write to
Returns:
A tuple representing number of files processed, log of actions, errors
"""
# Write to a temporary file, just in case we are doing an implace modify.
with open(in_filename, "r") as in_file, \
tempfile.NamedTemporaryFile("w", delete=False) as temp_file:
ret = self.process_opened_file(
in_filename, in_file, out_filename, temp_file)
shutil.move(temp_file.name, out_filename)
return ret
# Broad exceptions are required here because ast throws whatever it wants.
# pylint: disable=broad-except
def process_opened_file(self, in_filename, in_file, out_filename, out_file):
"""Process the given python file for incompatible changes.
This function is split out to facilitate StringIO testing from
tf_upgrade_test.py.
Args:
in_filename: filename to parse
in_file: opened file (or StringIO)
out_filename: output file to write to
out_file: opened file (or StringIO)
Returns:
A tuple representing number of files processed, log of actions, errors
"""
process_errors = []
text = "-" * 80 + "\n"
text += "Processing file %r\n outputting to %r\n" % (in_filename,
out_filename)
text += "-" * 80 + "\n\n"
parsed_ast = None
lines = in_file.readlines()
try:
parsed_ast = ast.parse("".join(lines))
except Exception:
text += "Failed to parse %r\n\n" % in_filename
text += traceback.format_exc()
if parsed_ast:
visitor = TensorFlowCallVisitor(in_filename, lines)
visitor.visit(parsed_ast)
out_text, new_text, process_errors = visitor.process(lines)
text += new_text
if out_file:
out_file.write(out_text)
text += "\n"
return 1, text, process_errors
# pylint: enable=broad-except
def process_tree(self, root_directory, output_root_directory):
"""Processes upgrades on an entire tree of python files in place.
Note that only Python files. If you have custom code in other languages,
you will need to manually upgrade those.
Args:
root_directory: Directory to walk and process.
output_root_directory: Directory to use as base
Returns:
A tuple of files processed, the report string ofr all files, and errors
"""
# make sure output directory doesn't exist
if output_root_directory and os.path.exists(output_root_directory):
print("Output directory %r must not already exist." % (
output_root_directory))
sys.exit(1)
# make sure output directory does not overlap with root_directory
norm_root = os.path.split(os.path.normpath(root_directory))
norm_output = os.path.split(os.path.normpath(output_root_directory))
if norm_root == norm_output:
print("Output directory %r same as input directory %r" % (
root_directory, output_root_directory))
sys.exit(1)
# Collect list of files to process (we do this to correctly handle if the
# user puts the output directory in some sub directory of the input dir)
files_to_process = []
for dir_name, _, file_list in os.walk(root_directory):
py_files = [f for f in file_list if f.endswith(".py")]
for filename in py_files:
fullpath = os.path.join(dir_name, filename)
fullpath_output = os.path.join(
output_root_directory, os.path.relpath(fullpath, root_directory))
files_to_process.append((fullpath, fullpath_output))
file_count = 0
tree_errors = []
report = ""
report += ("=" * 80) + "\n"
report += "Input tree: %r\n" % root_directory
report += ("=" * 80) + "\n"
for input_path, output_path in files_to_process:
output_directory = os.path.dirname(output_path)
if not os.path.isdir(output_directory):
os.makedirs(output_directory)
file_count += 1
_, l_report, l_errors = self.process_file(input_path, output_path)
tree_errors += l_errors
report += l_report
return file_count, report, tree_errors
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""Convert a TensorFlow Python file to 1.0
Simple usage:
tf_convert.py --infile foo.py --outfile bar.py
tf_convert.py --intree ~/code/old --outtree ~/code/new
""")
parser.add_argument(
"--infile",
dest="input_file",
help="If converting a single file, the name of the file "
"to convert")
parser.add_argument(
"--outfile",
dest="output_file",
help="If converting a single file, the output filename.")
parser.add_argument(
"--intree",
dest="input_tree",
help="If converting a whole tree of files, the directory "
"to read from (relative or absolute).")
parser.add_argument(
"--outtree",
dest="output_tree",
help="If converting a whole tree of files, the output "
"directory (relative or absolute).")
parser.add_argument(
"--reportfile",
dest="report_filename",
help=("The name of the file where the report log is "
"stored."
"(default: %(default)s)"),
default="report.txt")
args = parser.parse_args()
upgrade = TensorFlowCodeUpgrader()
report_text = None
report_filename = args.report_filename
files_processed = 0
if args.input_file:
files_processed, report_text, errors = upgrade.process_file(
args.input_file, args.output_file)
files_processed = 1
elif args.input_tree:
files_processed, report_text, errors = upgrade.process_tree(
args.input_tree, args.output_tree)
else:
parser.print_help()
if report_text:
open(report_filename, "w").write(report_text)
print("TensorFlow 1.0 Upgrade Script")
print("-----------------------------")
print("Converted %d files\n" % files_processed)
print("Detected %d errors that require attention" % len(errors))
print("-" * 80)
print("\n".join(errors))
print("\nMake sure to read the detailed log %r\n" % report_filename)