diff --git a/R/ModelFit.R b/R/ModelFit.R index e244e838..0d93f917 100644 --- a/R/ModelFit.R +++ b/R/ModelFit.R @@ -845,6 +845,7 @@ confint.cyclopsFit <- function(object, parm, level = 0.95, #control, .checkInterface(object$cyclopsData, testOnly = TRUE) #.setControl(object$cyclopsData$cyclopsInterfacePtr, control) + savedParm <- parm parm <- .checkCovariates(object$cyclopsData, parm) if (level < 0.01 || level > 0.99) { stop("level must be between 0 and 1") @@ -861,13 +862,19 @@ confint.cyclopsFit <- function(object, parm, level = 0.95, #control, hessianDiagonal <- .cyclopsGetLogLikelihoodHessianDiagonal(object$cyclopsData$cyclopsInterfacePtr, parm) if (any(hessianDiagonal > maximumCurvature)) { - stop("Cannot estimate confidence interval for a monotonic log-likelihood function") - } + warning("Cannot estimate confidence interval for a monotonic log-likelihood function") + + prof <- data.frame(covariates = savedParm, + lower = rep(NA, length(parm)), + upper = rep(NA, length(parm)), + evaluations = rep(NA, length(parm))) + } else { - prof <- .cyclopsProfileModel(object$cyclopsData$cyclopsInterfacePtr, parm, - threads, threshold, - overrideNoRegularization, - includePenalty) + prof <- .cyclopsProfileModel(object$cyclopsData$cyclopsInterfacePtr, parm, + threads, threshold, + overrideNoRegularization, + includePenalty) + } indices <- match(parm, getCovariateIds(object$cyclopsData)) diff --git a/tests/testthat/test-finiteMLE.R b/tests/testthat/test-finiteMLE.R index 14a8942f..97e13815 100644 --- a/tests/testthat/test-finiteMLE.R +++ b/tests/testthat/test-finiteMLE.R @@ -25,7 +25,7 @@ test_that("Check for infinite MLE in Cox example with no outcomes in one treatme cyclopsData <- createCyclopsData(Surv(time, outcome) ~ exposure, data = data, modelType = "cox") expect_warning(fit <- fitCyclopsModel(cyclopsData), regexp =".*coefficient may be infinite.*") - expect_error(ci <- confint(fit, parm = "exposureTRUE", level = 0.9)) + expect_warning(ci <- confint(fit, parm = "exposureTRUE", level = 0.9)) ci <- confint(fit, parm = "exposureTRUE", level = 0.9, maximumCurvature = 0) expect_true(is.na(ci[2])) })