-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
34 lines (33 loc) · 1.88 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<title>Map of Data Collection</title>
<meta name="viewport" content="initial-scale=1,maximum-scale=1,user-scalable=no">
<link href="https://api.mapbox.com/mapbox-gl-js/v2.1.1/mapbox-gl.css" rel="stylesheet">
<script src="https://api.mapbox.com/mapbox-gl-js/v2.1.1/mapbox-gl.js"></script>
<link href='css/index.css' rel='stylesheet' />
</head>
<body>
<div id='layers' class='map-container'>
<!-- <strong>Towards Evaluating the Built-Environment for Accessibility: A Hybridized Approach for Identifying Buildings with Ramp Entrances</strong> -->
<p>Map visualizes spatial extent and distribution of Mapillary images collected.</p>
<p><span style='background-color: #ea80fc'></span><strong> OpenStreetMap (OSM) extract: </strong>Retrieved 794 building footprints (random 400 + 394 “wheelchair=yes” AND “building=yes” tags). <a href='https://github.com/Noznoc/access-classifier/tree/main/data' target='_blank'>Available to download</a>.</p>
<p> <span style='background-color: #fdd71c'></span> <strong>Mapillary API requests: </strong>Retrieved total of ~12,810 images. First, by source (1) centroids. Then, to increase the dataset, images were retrieved from road segments based on local knowledge.</p>
</div>
<div id="map"></div>
<script>
mapboxgl.accessToken = 'pk.eyJ1IjoianVsY29ueiIsImEiOiJja21sMXR1ZjIxNm4xMm5tbngxdGczczZ5In0.-fXyoPu2kySglMJDIS4D1A'; // temp key
var map = new mapboxgl.Map({
container: 'map', // container id
style: 'mapbox://styles/julconz/ckmnjp4zo22xq17ma2l9oz4pm', // style URL
center: [-75.7229,45.4793],
zoom: 1,
maxZoom: 14,
minZoom: 1,
maxBounds: [-76.2098,45.1225,-75.2565,45.6442]
});
map.addControl(new mapboxgl.ScaleControl({position: 'bottom-right'}));
</script>
</body>
</html>