-
Notifications
You must be signed in to change notification settings - Fork 4
/
my_transform.py
63 lines (48 loc) · 1.69 KB
/
my_transform.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Copyright 2020 Novartis Institutes for BioMedical Research Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
from random import sample, random
class z_score(object):
def __call__(self, img):
img = img.type(torch.FloatTensor)
img = img - img.mean()
img = img / img.std()
return img
def __repr__(self):
return self.__class__.__name__
class random_180_rotation(object):
def __call__(self, img):
angle = sample([0, 2], 1)[0]
return np.rot90(img, k=angle).copy()
def __repr__(self):
return self.__class__.__name__
class random_vertical_flip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img):
if random() < self.p:
return np.flip(img, axis=0)
return img
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)
class random_horizontal_flip(object):
def __init__(self, p=0.5):
self.p = p
def __call__(self, img):
if random() < self.p:
return np.flip(img, axis=1)
return img
def __repr__(self):
return self.__class__.__name__ + '(p={})'.format(self.p)