-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDeepCt.py
28 lines (20 loc) · 1.11 KB
/
DeepCt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import torch.nn as nn
import torch
class DeepCt(nn.Module):
def __init__(self, global_feats=0, hidden_feats=None, feat_drops=None,
n_tasks=1, predictor_hidden_feats=128, predictor_dropout=0., num_layers=1):
super(DeepCt, self).__init__()
# Create FFN layers
if num_layers == 1:
ffn = [nn.Dropout(predictor_dropout), nn.Linear(global_feats, n_tasks)]
else:
ffn = [nn.Dropout(predictor_dropout), nn.Linear( global_feats, predictor_hidden_feats), nn.BatchNorm1d(predictor_hidden_feats), nn.ReLU()]
for _ in range(num_layers - 2):
ffn.extend([nn.Dropout(predictor_dropout), nn.Linear(predictor_hidden_feats, predictor_hidden_feats), nn.BatchNorm1d(predictor_hidden_feats), nn.ReLU()])
ffn.extend([nn.Linear(predictor_hidden_feats, n_tasks)]);
self.predict = nn.Sequential(*ffn);
def forward(self, global_feats):
output = self.predict(global_feats);
m = nn.Softplus()
output = m(output)
return output;