forked from spro/practical-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
54 lines (38 loc) · 1.33 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Practical PyTorch: Generating Names with a Conditional Character-Level RNN
# https://github.com/spro/practical-pytorch
import sys
if len(sys.argv) < 2:
print("Usage: generate.py [language]")
sys.exit()
else:
language = sys.argv[1]
import torch
import torch.nn as nn
from torch.autograd import Variable
from data import *
from model import *
rnn = torch.load('conditional-char-rnn.pt')
# Generating from the Network
max_length = 20
def generate_one(category, start_char='A', temperature=0.5):
category_input = make_category_input(category)
chars_input = make_chars_input(start_char)
hidden = rnn.init_hidden()
output_str = start_char
for i in range(max_length):
output, hidden = rnn(category_input, chars_input[0], hidden)
# Sample as a multinomial distribution
output_dist = output.data.view(-1).div(temperature).exp()
top_i = torch.multinomial(output_dist, 1)[0]
# Stop at EOS, or add to output_str
if top_i == EOS:
break
else:
char = all_letters[top_i]
output_str += char
chars_input = make_chars_input(char)
return output_str
def generate(category, start_chars='ABC'):
for start_char in start_chars:
print(generate_one(category, start_char))
generate(language)