-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
348 lines (279 loc) · 13.6 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import numpy as np
import random
from collections import namedtuple, deque
from model import H2Network, H3Network
from hyperparams import *
import torch
import torch.nn.functional as F
import torch.optim as optim
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class DQH2Agent():
"""Deep Q Network with 2 hidden layers that interacts with and learns from the environment."""
def __init__(self, state_size, action_size, seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
# Q-Network
self.dqnetwork_local = H2Network(state_size, action_size, seed).to(device)
self.dqnetwork_target = H2Network(state_size, action_size, seed).to(device)
self.optimizer = optim.Adam(self.dqnetwork_local.parameters(), lr=LR)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.dqnetwork_local.eval()
with torch.no_grad():
action_values = self.dqnetwork_local(state)
self.dqnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# Get max predicted Q values (for next states) from target model
Q_targets_next = self.dqnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
# Compute Q targets for current states
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Get expected Q values from local model
Q_expected = self.dqnetwork_local(states).gather(1, actions)
# Compute loss
loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.dqnetwork_local, self.dqnetwork_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class DDQH2Agent(DQH2Agent):
"""
Double Deep Q Network with 2 hidden layers that interacts with and learns from the environment
"""
def __init__(self, state_size, action_size, seed):
"""Initialize an Agent object.
:param state_size: int. dimension of each state
:param action_size: int. dimension of each action
:param seed: int. random seed
"""
super(DDQH2Agent, self).__init__(state_size, action_size, seed)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
:param experiences: Tuple[torch.Tensor]. tuple of (s, a, r, s', done)
:param gamma: float. discount factor
"""
states, actions, rewards, next_states, dones = experiences
rewards_ = torch.clamp(rewards, min=-1., max=1.)
# arg max_{a} \hat{Q}(s_{t+1}, a, θ_t)
argmax_actions = self.dqnetwork_local(next_states).detach().max(1)[1].unsqueeze(1)
# max_Qhat := \hat{Q}(s_{t+1}, argmax_actions, θ^−)
max_Qhat = self.dqnetwork_target(next_states).gather(1, argmax_actions)
# y_i = r + γ * maxQhat
# y_i = r, if done
Q_target = rewards_ + (gamma * max_Qhat * (1 - dones))
# Q(\phi(s_t), a_j; \theta)
Q_expected = self.dqnetwork_local(states).gather(1, actions)
# perform gradient descent step on on (y_i - Q)**2
loss = F.mse_loss(Q_expected, Q_target)
self.optimizer.zero_grad() # Clear the gradients
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.dqnetwork_local, self.dqnetwork_target, TAU)
class DQH3Agent():
"""Deep Q Network with 3 hidden layers that interacts with and learns from the environment."""
def __init__(self, state_size, action_size, seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(seed)
# Q-Network
self.dqnetwork_local = H3Network(state_size, action_size, seed).to(device)
self.dqnetwork_target = H3Network(state_size, action_size, seed).to(device)
self.optimizer = optim.Adam(self.dqnetwork_local.parameters(), lr=LR)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def step(self, state, action, reward, next_state, done):
# Save experience in replay memory
self.memory.add(state, action, reward, next_state, done)
# Learn every UPDATE_EVERY time steps.
self.t_step = (self.t_step + 1) % UPDATE_EVERY
if self.t_step == 0:
# If enough samples are available in memory, get random subset and learn
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, eps=0.):
"""Returns actions for given state as per current policy.
Params
======
state (array_like): current state
eps (float): epsilon, for epsilon-greedy action selection
"""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
self.dqnetwork_local.eval()
with torch.no_grad():
action_values = self.dqnetwork_local(state)
self.dqnetwork_local.train()
# Epsilon-greedy action selection
if random.random() > eps:
return np.argmax(action_values.cpu().data.numpy())
else:
return random.choice(np.arange(self.action_size))
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# Get max predicted Q values (for next states) from target model
Q_targets_next = self.dqnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
# Compute Q targets for current states
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Get expected Q values from local model
Q_expected = self.dqnetwork_local(states).gather(1, actions)
# Compute loss
loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.dqnetwork_local, self.dqnetwork_target, TAU)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model (PyTorch model): weights will be copied from
target_model (PyTorch model): weights will be copied to
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class DDQH3Agent(DQH3Agent):
"""
Double Deep Q Network with 3 hidden layers that interacts with and learns from the environment
"""
def __init__(self, state_size, action_size, seed):
"""Initialize an Agent object.
:param state_size: int. dimension of each state
:param action_size: int. dimension of each action
:param seed: int. random seed
"""
super(DDQH3Agent, self).__init__(state_size, action_size, seed)
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
# Initialize time step (for updating every UPDATE_EVERY steps)
self.t_step = 0
def learn(self, experiences, gamma):
"""Update value parameters using given batch of experience tuples.
:param experiences: Tuple[torch.Tensor]. tuple of (s, a, r, s', done)
:param gamma: float. discount factor
"""
states, actions, rewards, next_states, dones = experiences
rewards_ = torch.clamp(rewards, min=-1., max=1.)
# arg max_{a} \hat{Q}(s_{t+1}, a, θ_t)
argmax_actions = self.dqnetwork_local(next_states).detach().max(1)[1].unsqueeze(1)
# max_Qhat := \hat{Q}(s_{t+1}, argmax_actions, θ^−)
max_Qhat = self.dqnetwork_target(next_states).gather(1, argmax_actions)
# y_i = r + γ * maxQhat
# y_i = r, if done
Q_target = rewards_ + (gamma * max_Qhat * (1 - dones))
# Q(\phi(s_t), a_j; \theta)
Q_expected = self.dqnetwork_local(states).gather(1, actions)
# perform gradient descent step on on (y_i - Q)**2
loss = F.mse_loss(Q_expected, Q_target)
self.optimizer.zero_grad() # Clear the gradients
loss.backward()
self.optimizer.step()
# ------------------- update target network ------------------- #
self.soft_update(self.dqnetwork_local, self.dqnetwork_target, TAU)
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
action_size (int): dimension of each action
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
seed (int): random seed
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)