-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
126 lines (99 loc) · 3.47 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import time
from options import Options
from dataset import *
from TPIM_model import *
from PTM_model import *
from RSIM_model import *
import torch.utils.data
def main(opt):
# train phase
if opt.mode=="train":
assert opt.shuffle==True
# model
if opt.submodel=="TPIM":
pgvton_train_dataset = pgvton_dataset()
pgvton_train_dataset.initialize(opt)
train_model = sginfer_model(opt)
train_model.print_network()
elif opt.submodel=="PIM":
pgvton_train_dataset = pgvton_dataset()
pgvton_train_dataset.initialize(opt)
train_model = viton_model(opt)
train_model.print_network()
elif opt.submodel=="RSIM":
pgvton_train_dataset = armpaint_dataset()
pgvton_train_dataset.initialize(opt)
train_model = armpaint_model(opt)
train_model.print_network()
# dataset
pgvton_train_dataset_loader = torch.utils.data.DataLoader(
pgvton_train_dataset,
batch_size=opt.batch,
shuffle=opt.shuffle,
num_workers=int(opt.nums_works),
pin_memory=True)
# model
time_bench = time.time()
for i in range(opt.epoch):
iter = 0
for index,data in enumerate(pgvton_train_dataset_loader):
iter+=1
train_model.setinput(data)
train_model.forward()
# vis output
if iter%opt.vis_ite==0:
train_model.vis_result(i,iter)
# print info
if iter%opt.log_print_ite==0:
train_model.log_print(i,iter,time_bench)
# vis loss
if iter%opt.log_vis_ite==0:
train_model.plot_loss(i,iter)
# save model
if i % opt.save_epo == 0:
train_model.save_network(i)
if i==(opt.epoch-1):
train_model.save_network(i)
# test phase
if opt.mode=="eval":
opt.shuffle= False
assert opt.inference!=None
opt.batch = 1
opt.nums_works =0
if opt.submodel == "TPIM":
opt.eval = 'pred_sg'
pgvton_test_dataset = pgvton_dataset()
pgvton_test_dataset.initialize(opt)
test_model = sginfer_model(opt)
test_model.print_network()
elif opt.submodel == "PIM":
opt.eval = 'warped_garment'
opt.human_mask_dir ='pred_sg\\sg'
pgvton_test_dataset = pgvton_dataset()
pgvton_test_dataset.initialize(opt)
test_model = viton_model(opt)
test_model.print_network()
elif opt.submodel == "RSIM":
opt.eval = 'arm'
pgvton_test_dataset = armpaint_dataset()
pgvton_test_dataset.initialize(opt)
test_model = armpaint_model(opt)
test_model.print_network()
# dataset
test_dataset_loader = torch.utils.data.DataLoader(
pgvton_test_dataset,
batch_size=opt.batch,
shuffle=opt.shuffle,
num_workers=int(opt.nums_works),
pin_memory=True)
# model
iter = 0
for index, data in enumerate(test_dataset_loader):
print(index)
test_model.setinput(data)
test_model.eval(iter)
iter += 1
if __name__=="__main__" :
opt=Options().parse()
main(opt)