forked from snakers4/silero-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtts_utils.py
95 lines (73 loc) · 3.02 KB
/
tts_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import os
import re
import torch
import warnings
def init_jit_model(model_url: str,
device: torch.device = torch.device('cpu')):
torch.set_grad_enabled(False)
model_dir = os.path.join(os.path.dirname(__file__), "model")
os.makedirs(model_dir, exist_ok=True)
model_path = os.path.join(model_dir, os.path.basename(model_url))
if not os.path.isfile(model_path):
torch.hub.download_url_to_file(model_url,
model_path,
progress=True)
model = torch.jit.load(model_path, map_location=device)
model.eval()
return model
def prepare_text_input(text, symbols, symbol_to_id=None):
if len(text) > 140:
warnings.warn('Text string is longer than 140 symbols.')
if symbol_to_id is None:
symbol_to_id = {s: i for i, s in enumerate(symbols)}
text = text.lower()
text = re.sub(r'[^{}]'.format(symbols[2:]), '', text)
text = re.sub(r'\s+', ' ', text).strip()
if text[-1] not in ['.', '!', '?']:
text = text + '.'
text = text + symbols[1]
text_ohe = [symbol_to_id[s] for s in text if s in symbols]
text_tensor = torch.LongTensor(text_ohe)
return text_tensor
def prepare_tts_model_input(text: str or list, symbols: str):
if type(text) == str:
text = [text]
symbol_to_id = {s: i for i, s in enumerate(symbols)}
if len(text) == 1:
return prepare_text_input(text[0], symbols, symbol_to_id).unsqueeze(0), torch.LongTensor([0])
text_tensors = []
for string in text:
string_tensor = prepare_text_input(string, symbols, symbol_to_id)
text_tensors.append(string_tensor)
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(t) for t in text_tensors]),
dim=0, descending=True)
max_input_len = input_lengths[0]
batch_size = len(text_tensors)
text_padded = torch.ones(batch_size, max_input_len, dtype=torch.int32)
for i, idx in enumerate(ids_sorted_decreasing):
text_tensor = text_tensors[idx]
in_len = text_tensor.size(0)
text_padded[i, :in_len] = text_tensor
return text_padded, ids_sorted_decreasing
def process_tts_model_output(out, out_lens, ids, sample_rate):
assert sample_rate in [8000, 16000]
out = out.to('cpu')
out_lens = out_lens.to('cpu')
_, orig_ids = ids.sort()
proc_outs = []
srf = 2 if sample_rate == 16000 else 1
orig_out = out.index_select(0, orig_ids)
orig_out_lens = out_lens.index_select(0, orig_ids)
for i, out_len in enumerate(orig_out_lens):
proc_outs.append(orig_out[i][:out_len*srf])
return proc_outs
def apply_tts(texts: list,
model: torch.nn.Module,
sample_rate: int,
symbols: str,
device: torch.device):
text_padded, orig_ids = prepare_tts_model_input(texts, symbols=symbols)
out, out_lens = model(text_padded.to(device))
audios = process_tts_model_output(out, out_lens, orig_ids, sample_rate)
return audios