forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinline.rs
638 lines (576 loc) · 21.9 KB
/
inline.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
//! Support for inlining external documentation into the current AST.
use std::iter::once;
use rustc_ast as ast;
use rustc_data_structures::fx::FxHashSet;
use rustc_hir as hir;
use rustc_hir::def::{DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::Mutability;
use rustc_metadata::creader::LoadedMacro;
use rustc_middle::ty::{self, TyCtxt};
use rustc_span::hygiene::MacroKind;
use rustc_span::symbol::{kw, sym, Symbol};
use rustc_span::Span;
use crate::clean::{self, Attributes, GetDefId, ToSource};
use crate::core::DocContext;
use crate::formats::item_type::ItemType;
use super::Clean;
type Attrs<'hir> = rustc_middle::ty::Attributes<'hir>;
/// Attempt to inline a definition into this AST.
///
/// This function will fetch the definition specified, and if it is
/// from another crate it will attempt to inline the documentation
/// from the other crate into this crate.
///
/// This is primarily used for `pub use` statements which are, in general,
/// implementation details. Inlining the documentation should help provide a
/// better experience when reading the documentation in this use case.
///
/// The returned value is `None` if the definition could not be inlined,
/// and `Some` of a vector of items if it was successfully expanded.
///
/// `parent_module` refers to the parent of the *re-export*, not the original item.
crate fn try_inline(
cx: &mut DocContext<'_>,
parent_module: DefId,
res: Res,
name: Symbol,
attrs: Option<Attrs<'_>>,
visited: &mut FxHashSet<DefId>,
) -> Option<Vec<clean::Item>> {
let did = res.opt_def_id()?;
if did.is_local() {
return None;
}
let mut ret = Vec::new();
debug!("attrs={:?}", attrs);
let attrs_clone = attrs;
let kind = match res {
Res::Def(DefKind::Trait, did) => {
record_extern_fqn(cx, did, ItemType::Trait);
build_impls(cx, Some(parent_module), did, attrs, &mut ret);
clean::TraitItem(build_external_trait(cx, did))
}
Res::Def(DefKind::Fn, did) => {
record_extern_fqn(cx, did, ItemType::Function);
clean::FunctionItem(build_external_function(cx, did))
}
Res::Def(DefKind::Struct, did) => {
record_extern_fqn(cx, did, ItemType::Struct);
build_impls(cx, Some(parent_module), did, attrs, &mut ret);
clean::StructItem(build_struct(cx, did))
}
Res::Def(DefKind::Union, did) => {
record_extern_fqn(cx, did, ItemType::Union);
build_impls(cx, Some(parent_module), did, attrs, &mut ret);
clean::UnionItem(build_union(cx, did))
}
Res::Def(DefKind::TyAlias, did) => {
record_extern_fqn(cx, did, ItemType::Typedef);
build_impls(cx, Some(parent_module), did, attrs, &mut ret);
clean::TypedefItem(build_type_alias(cx, did), false)
}
Res::Def(DefKind::Enum, did) => {
record_extern_fqn(cx, did, ItemType::Enum);
build_impls(cx, Some(parent_module), did, attrs, &mut ret);
clean::EnumItem(build_enum(cx, did))
}
Res::Def(DefKind::ForeignTy, did) => {
record_extern_fqn(cx, did, ItemType::ForeignType);
build_impls(cx, Some(parent_module), did, attrs, &mut ret);
clean::ForeignTypeItem
}
// Never inline enum variants but leave them shown as re-exports.
Res::Def(DefKind::Variant, _) => return None,
// Assume that enum variants and struct types are re-exported next to
// their constructors.
Res::Def(DefKind::Ctor(..), _) | Res::SelfCtor(..) => return Some(Vec::new()),
Res::Def(DefKind::Mod, did) => {
record_extern_fqn(cx, did, ItemType::Module);
clean::ModuleItem(build_module(cx, did, visited))
}
Res::Def(DefKind::Static, did) => {
record_extern_fqn(cx, did, ItemType::Static);
clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did)))
}
Res::Def(DefKind::Const, did) => {
record_extern_fqn(cx, did, ItemType::Constant);
clean::ConstantItem(build_const(cx, did))
}
Res::Def(DefKind::Macro(kind), did) => {
let mac = build_macro(cx, did, name);
let type_kind = match kind {
MacroKind::Bang => ItemType::Macro,
MacroKind::Attr => ItemType::ProcAttribute,
MacroKind::Derive => ItemType::ProcDerive,
};
record_extern_fqn(cx, did, type_kind);
mac
}
_ => return None,
};
let target_attrs = load_attrs(cx, did);
let attrs = box merge_attrs(cx, Some(parent_module), target_attrs, attrs_clone);
cx.inlined.insert(did);
let what_rustc_thinks = clean::Item::from_def_id_and_parts(did, Some(name), kind, cx);
ret.push(clean::Item { attrs, ..what_rustc_thinks });
Some(ret)
}
crate fn try_inline_glob(
cx: &mut DocContext<'_>,
res: Res,
visited: &mut FxHashSet<DefId>,
) -> Option<Vec<clean::Item>> {
let did = res.opt_def_id()?;
if did.is_local() {
return None;
}
match res {
Res::Def(DefKind::Mod, did) => {
let m = build_module(cx, did, visited);
Some(m.items)
}
// glob imports on things like enums aren't inlined even for local exports, so just bail
_ => None,
}
}
crate fn load_attrs<'hir>(cx: &DocContext<'hir>, did: DefId) -> Attrs<'hir> {
cx.tcx.get_attrs(did)
}
/// Record an external fully qualified name in the external_paths cache.
///
/// These names are used later on by HTML rendering to generate things like
/// source links back to the original item.
crate fn record_extern_fqn(cx: &mut DocContext<'_>, did: DefId, kind: ItemType) {
let crate_name = cx.tcx.crate_name(did.krate).to_string();
let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| {
// extern blocks have an empty name
let s = elem.data.to_string();
if !s.is_empty() { Some(s) } else { None }
});
let fqn = if let ItemType::Macro = kind {
// Check to see if it is a macro 2.0 or built-in macro
if matches!(
cx.enter_resolver(|r| r.cstore().load_macro_untracked(did, cx.sess())),
LoadedMacro::MacroDef(def, _)
if matches!(&def.kind, ast::ItemKind::MacroDef(ast_def)
if !ast_def.macro_rules)
) {
once(crate_name).chain(relative).collect()
} else {
vec![crate_name, relative.last().expect("relative was empty")]
}
} else {
once(crate_name).chain(relative).collect()
};
if did.is_local() {
cx.cache.exact_paths.insert(did, fqn);
} else {
cx.cache.external_paths.insert(did, (fqn, ItemType::from(kind)));
}
}
crate fn build_external_trait(cx: &mut DocContext<'_>, did: DefId) -> clean::Trait {
let trait_items =
cx.tcx.associated_items(did).in_definition_order().map(|item| item.clean(cx)).collect();
let predicates = cx.tcx.predicates_of(did);
let generics = (cx.tcx.generics_of(did), predicates).clean(cx);
let generics = filter_non_trait_generics(did, generics);
let (generics, supertrait_bounds) = separate_supertrait_bounds(generics);
let is_auto = cx.tcx.trait_is_auto(did);
clean::Trait {
unsafety: cx.tcx.trait_def(did).unsafety,
generics,
items: trait_items,
bounds: supertrait_bounds,
is_auto,
}
}
fn build_external_function(cx: &mut DocContext<'_>, did: DefId) -> clean::Function {
let sig = cx.tcx.fn_sig(did);
let constness =
if cx.tcx.is_const_fn_raw(did) { hir::Constness::Const } else { hir::Constness::NotConst };
let asyncness = cx.tcx.asyncness(did);
let predicates = cx.tcx.predicates_of(did);
let (generics, decl) = clean::enter_impl_trait(cx, |cx| {
((cx.tcx.generics_of(did), predicates).clean(cx), (did, sig).clean(cx))
});
clean::Function {
decl,
generics,
header: hir::FnHeader { unsafety: sig.unsafety(), abi: sig.abi(), constness, asyncness },
}
}
fn build_enum(cx: &mut DocContext<'_>, did: DefId) -> clean::Enum {
let predicates = cx.tcx.explicit_predicates_of(did);
clean::Enum {
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
variants_stripped: false,
variants: cx.tcx.adt_def(did).variants.clean(cx),
}
}
fn build_struct(cx: &mut DocContext<'_>, did: DefId) -> clean::Struct {
let predicates = cx.tcx.explicit_predicates_of(did);
let variant = cx.tcx.adt_def(did).non_enum_variant();
clean::Struct {
struct_type: variant.ctor_kind,
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
fields: variant.fields.clean(cx),
fields_stripped: false,
}
}
fn build_union(cx: &mut DocContext<'_>, did: DefId) -> clean::Union {
let predicates = cx.tcx.explicit_predicates_of(did);
let variant = cx.tcx.adt_def(did).non_enum_variant();
clean::Union {
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
fields: variant.fields.clean(cx),
fields_stripped: false,
}
}
fn build_type_alias(cx: &mut DocContext<'_>, did: DefId) -> clean::Typedef {
let predicates = cx.tcx.explicit_predicates_of(did);
let type_ = cx.tcx.type_of(did).clean(cx);
clean::Typedef {
type_,
generics: (cx.tcx.generics_of(did), predicates).clean(cx),
item_type: None,
}
}
/// Builds all inherent implementations of an ADT (struct/union/enum) or Trait item/path/reexport.
crate fn build_impls(
cx: &mut DocContext<'_>,
parent_module: Option<DefId>,
did: DefId,
attrs: Option<Attrs<'_>>,
ret: &mut Vec<clean::Item>,
) {
let tcx = cx.tcx;
// for each implementation of an item represented by `did`, build the clean::Item for that impl
for &did in tcx.inherent_impls(did).iter() {
build_impl(cx, parent_module, did, attrs, ret);
}
}
/// `parent_module` refers to the parent of the re-export, not the original item
fn merge_attrs(
cx: &mut DocContext<'_>,
parent_module: Option<DefId>,
old_attrs: Attrs<'_>,
new_attrs: Option<Attrs<'_>>,
) -> clean::Attributes {
// NOTE: If we have additional attributes (from a re-export),
// always insert them first. This ensure that re-export
// doc comments show up before the original doc comments
// when we render them.
if let Some(inner) = new_attrs {
if let Some(new_id) = parent_module {
let diag = cx.sess().diagnostic();
let doc_cfg_active = cx.tcx.features().doc_cfg;
Attributes::from_ast(
diag,
old_attrs,
Some((inner, new_id)),
doc_cfg_active,
&cx.hidden_cfg,
)
} else {
let mut both = inner.to_vec();
both.extend_from_slice(old_attrs);
both.clean(cx)
}
} else {
old_attrs.clean(cx)
}
}
/// Builds a specific implementation of a type. The `did` could be a type method or trait method.
crate fn build_impl(
cx: &mut DocContext<'_>,
parent_module: impl Into<Option<DefId>>,
did: DefId,
attrs: Option<Attrs<'_>>,
ret: &mut Vec<clean::Item>,
) {
if !cx.inlined.insert(did) {
return;
}
let tcx = cx.tcx;
let associated_trait = tcx.impl_trait_ref(did);
// Only inline impl if the implemented trait is
// reachable in rustdoc generated documentation
if !did.is_local() {
if let Some(traitref) = associated_trait {
let did = traitref.def_id;
if !cx.cache.access_levels.is_public(did) {
return;
}
if let Some(stab) = tcx.lookup_stability(did) {
if stab.level.is_unstable() && stab.feature == sym::rustc_private {
return;
}
}
}
}
let impl_item = match did.as_local() {
Some(did) => {
let hir_id = tcx.hir().local_def_id_to_hir_id(did);
match &tcx.hir().expect_item(hir_id).kind {
hir::ItemKind::Impl(impl_) => Some(impl_),
_ => panic!("`DefID` passed to `build_impl` is not an `impl"),
}
}
None => None,
};
let for_ = match &impl_item {
Some(impl_) => impl_.self_ty.clean(cx),
None => tcx.type_of(did).clean(cx),
};
// Only inline impl if the implementing type is
// reachable in rustdoc generated documentation
if !did.is_local() {
if let Some(did) = for_.def_id() {
if !cx.cache.access_levels.is_public(did) {
return;
}
if let Some(stab) = tcx.lookup_stability(did) {
if stab.level.is_unstable() && stab.feature == sym::rustc_private {
return;
}
}
}
}
let predicates = tcx.explicit_predicates_of(did);
let (trait_items, generics) = match impl_item {
Some(impl_) => (
impl_
.items
.iter()
.map(|item| tcx.hir().impl_item(item.id).clean(cx))
.collect::<Vec<_>>(),
impl_.generics.clean(cx),
),
None => (
tcx.associated_items(did)
.in_definition_order()
.filter_map(|item| {
if associated_trait.is_some() || item.vis == ty::Visibility::Public {
Some(item.clean(cx))
} else {
None
}
})
.collect::<Vec<_>>(),
clean::enter_impl_trait(cx, |cx| (tcx.generics_of(did), predicates).clean(cx)),
),
};
let polarity = tcx.impl_polarity(did);
let trait_ = associated_trait.clean(cx).map(|bound| match bound {
clean::GenericBound::TraitBound(polyt, _) => polyt.trait_,
clean::GenericBound::Outlives(..) => unreachable!(),
});
if trait_.def_id() == tcx.lang_items().deref_trait() {
super::build_deref_target_impls(cx, &trait_items, ret);
}
if let Some(trait_did) = trait_.def_id() {
record_extern_trait(cx, trait_did);
}
let provided = trait_
.def_id()
.map(|did| tcx.provided_trait_methods(did).map(|meth| meth.ident.name).collect())
.unwrap_or_default();
debug!("build_impl: impl {:?} for {:?}", trait_.def_id(), for_.def_id());
let attrs = box merge_attrs(cx, parent_module.into(), load_attrs(cx, did), attrs);
debug!("merged_attrs={:?}", attrs);
ret.push(clean::Item::from_def_id_and_attrs_and_parts(
did,
None,
clean::ImplItem(clean::Impl {
span: clean::types::rustc_span(did, cx.tcx),
unsafety: hir::Unsafety::Normal,
generics,
provided_trait_methods: provided,
trait_,
for_,
items: trait_items,
negative_polarity: polarity.clean(cx),
synthetic: false,
blanket_impl: None,
}),
attrs,
cx,
));
}
fn build_module(
cx: &mut DocContext<'_>,
did: DefId,
visited: &mut FxHashSet<DefId>,
) -> clean::Module {
let mut items = Vec::new();
// If we're re-exporting a re-export it may actually re-export something in
// two namespaces, so the target may be listed twice. Make sure we only
// visit each node at most once.
for &item in cx.tcx.item_children(did).iter() {
if item.vis == ty::Visibility::Public {
if let Some(def_id) = item.res.mod_def_id() {
if did == def_id || !visited.insert(def_id) {
continue;
}
}
if let Res::PrimTy(p) = item.res {
// Primitive types can't be inlined so generate an import instead.
items.push(clean::Item {
name: None,
attrs: box clean::Attributes::default(),
def_id: cx.next_def_id(did.krate),
visibility: clean::Public,
kind: box clean::ImportItem(clean::Import::new_simple(
item.ident.name,
clean::ImportSource {
path: clean::Path {
global: false,
res: item.res,
segments: vec![clean::PathSegment {
name: clean::PrimitiveType::from(p).as_sym(),
args: clean::GenericArgs::AngleBracketed {
args: Vec::new(),
bindings: Vec::new(),
},
}],
},
did: None,
},
true,
)),
});
} else if let Some(i) = try_inline(cx, did, item.res, item.ident.name, None, visited) {
items.extend(i)
}
}
}
let span = clean::Span::from_rustc_span(cx.tcx.def_span(did));
clean::Module { items, span }
}
crate fn print_inlined_const(tcx: TyCtxt<'_>, did: DefId) -> String {
if let Some(did) = did.as_local() {
let hir_id = tcx.hir().local_def_id_to_hir_id(did);
rustc_hir_pretty::id_to_string(&tcx.hir(), hir_id)
} else {
tcx.rendered_const(did)
}
}
fn build_const(cx: &mut DocContext<'_>, def_id: DefId) -> clean::Constant {
clean::Constant {
type_: cx.tcx.type_of(def_id).clean(cx),
kind: clean::ConstantKind::Extern { def_id },
}
}
fn build_static(cx: &mut DocContext<'_>, did: DefId, mutable: bool) -> clean::Static {
clean::Static {
type_: cx.tcx.type_of(did).clean(cx),
mutability: if mutable { Mutability::Mut } else { Mutability::Not },
expr: None,
}
}
fn build_macro(cx: &mut DocContext<'_>, did: DefId, name: Symbol) -> clean::ItemKind {
let imported_from = cx.tcx.original_crate_name(did.krate);
match cx.enter_resolver(|r| r.cstore().load_macro_untracked(did, cx.sess())) {
LoadedMacro::MacroDef(def, _) => {
let matchers: Vec<Span> = if let ast::ItemKind::MacroDef(ref def) = def.kind {
let tts: Vec<_> = def.body.inner_tokens().into_trees().collect();
tts.chunks(4).map(|arm| arm[0].span()).collect()
} else {
unreachable!()
};
let source = format!(
"macro_rules! {} {{\n{}}}",
name.clean(cx),
matchers
.iter()
.map(|span| { format!(" {} => {{ ... }};\n", span.to_src(cx)) })
.collect::<String>()
);
clean::MacroItem(clean::Macro { source, imported_from: Some(imported_from) })
}
LoadedMacro::ProcMacro(ext) => clean::ProcMacroItem(clean::ProcMacro {
kind: ext.macro_kind(),
helpers: ext.helper_attrs,
}),
}
}
/// A trait's generics clause actually contains all of the predicates for all of
/// its associated types as well. We specifically move these clauses to the
/// associated types instead when displaying, so when we're generating the
/// generics for the trait itself we need to be sure to remove them.
/// We also need to remove the implied "recursive" Self: Trait bound.
///
/// The inverse of this filtering logic can be found in the `Clean`
/// implementation for `AssociatedType`
fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics {
for pred in &mut g.where_predicates {
match *pred {
clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref mut bounds }
if *s == kw::SelfUpper =>
{
bounds.retain(|bound| match *bound {
clean::GenericBound::TraitBound(
clean::PolyTrait { trait_: clean::ResolvedPath { did, .. }, .. },
_,
) => did != trait_did,
_ => true,
});
}
_ => {}
}
}
g.where_predicates.retain(|pred| match *pred {
clean::WherePredicate::BoundPredicate {
ty:
clean::QPath {
self_type: box clean::Generic(ref s),
trait_: box clean::ResolvedPath { did, .. },
name: ref _name,
},
ref bounds,
} => !(bounds.is_empty() || *s == kw::SelfUpper && did == trait_did),
_ => true,
});
g
}
/// Supertrait bounds for a trait are also listed in the generics coming from
/// the metadata for a crate, so we want to separate those out and create a new
/// list of explicit supertrait bounds to render nicely.
fn separate_supertrait_bounds(
mut g: clean::Generics,
) -> (clean::Generics, Vec<clean::GenericBound>) {
let mut ty_bounds = Vec::new();
g.where_predicates.retain(|pred| match *pred {
clean::WherePredicate::BoundPredicate { ty: clean::Generic(ref s), ref bounds }
if *s == kw::SelfUpper =>
{
ty_bounds.extend(bounds.iter().cloned());
false
}
_ => true,
});
(g, ty_bounds)
}
crate fn record_extern_trait(cx: &mut DocContext<'_>, did: DefId) {
if did.is_local() {
return;
}
{
if cx.external_traits.borrow().contains_key(&did) || cx.active_extern_traits.contains(&did)
{
return;
}
}
{
cx.active_extern_traits.insert(did);
}
debug!("record_extern_trait: {:?}", did);
let trait_ = build_external_trait(cx, did);
let trait_ = clean::TraitWithExtraInfo {
trait_,
is_notable: clean::utils::has_doc_flag(cx.tcx.get_attrs(did), sym::notable_trait),
};
cx.external_traits.borrow_mut().insert(did, trait_);
cx.active_extern_traits.remove(&did);
}