-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetl.py
167 lines (132 loc) · 6.51 KB
/
etl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import configparser
from datetime import datetime
import os
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, col, monotonically_increasing_id
from pyspark.sql.functions import year, month, dayofmonth, hour, weekofyear, date_format, dayofweek
config = configparser.ConfigParser()
config.read('dl.cfg')
os.environ['AWS_ACCESS_KEY_ID']=config['AWS']['AWS_ACCESS_KEY_ID']
os.environ['AWS_SECRET_ACCESS_KEY']=config['AWS']['AWS_SECRET_ACCESS_KEY']
def create_spark_session():
"""
Creates a saprk session.
"""
spark = SparkSession \
.builder \
.config("spark.jars.packages", "org.apache.hadoop:hadoop-aws:2.7.0") \
.getOrCreate()
return spark
def process_song_data(spark, input_data, output_data):
"""
Function to read in and process song data
spark: sparkSession
input_data: file path. read data from s3 bucket
output_data: file path. write data to s3 bucket
"""
# get filepath to song data file
song_data = input_data + "/song-data/A/A/A/*.json"
# read song data file
print('Loading data!!!')
df = spark.read.json(song_data)
print('Data loaded!!')
# extract columns to create songs table
songs_table = df.select("song_id", "title", "artist_id", "year", "duration").dropDuplicates()
songs_table.createOrReplaceTempView("songs")
# write songs table to parquet files partitioned by year and artist
songs_table.write.partitionBy("year", "artist_id").parquet(os.path.join(output_data, 'songs.parquet'), 'overwrite')
print("songs.parquet complete")
# extract columns to create artists table
print("Loading artist data")
artists_table = df.select("artist_id", "artist_name", "artist_location", "artist_latitude", "artist_longitude") \
.withColumnRenamed('artist_name' , 'name') \
.withColumnRenamed('artist_location', 'location') \
.withColumnRenamed('artist_latitude', 'latitude') \
.withColumnRenamed('artist_longitude', 'longitude') \
.dropDuplicates()
print("artist_data loaded")
artists_table.createOrReplaceTempView('artists')
# write artists table to parquet files
artists_table.write.parquet(os.path.join(output_data, 'artists.parquet'), 'overwrite')
print("artist.parquet complete")
print("==" * 20)
def process_log_data(spark, input_data, output_data):
"""
Function to read in and process log data
spark: sparkSession
input_data: file path. read data from s3 bucket
output_data: file path. write data to s3 bucket
"""
# get filepath to log data file
log_data = input_data + "log_data/*/*/*.json"
# read log data file
df = spark.read.json(log_data)
print("log data read Successful!!!")
# filter by actions for song plays
songplay_df = df.filter(df.page == 'NextSong').select('ts', 'userId', 'level', 'song', 'artist', 'sessionId', 'location', 'userAgent')
# extract columns for users table
print("Extracting user_table")
user_table = df.select("userId", "firstName", "lastName", "gender", "level").dropDuplicates()
user_table.createOrReplaceTempView('users')
print("user_table extracted")
# write users table to parquet files
user_table.write.parquet(os.path.join(output_data, 'users/users.parquet'), 'append')
print("user parquet completed")
# create timestamp column from original timestamp column
get_timestamp = udf(lambda x: str(int(int(x)/1000)))
songplay_df = songplay_df.withColumn('timestamp', get_timestamp(songplay_df.ts))
# create datetime column from original timestamp column
get_datetime = udf(lambda x: str(datetime.fromtimestamp(int(x) / 1000)))
songplay_df = songplay_df.withColumn('datetime', get_datetime(songplay_df.ts))
# extract columns to create time table
print("Extracting time table")
time_table = songplay_df.select('datetime') \
.withColumn('start_time', songplay_df.datetime) \
.withColumn('hour', hour('datetime')) \
.withColumn('day', dayofmonth('datetime')) \
.withColumn('week', weekofyear('datetime')) \
.withColumn('month', month('datetime')) \
.withColumn('year', year('datetime')) \
.withColumn('weekday', dayofweek('datetime')).dropDuplicates()
print("time table extracted")
# # write time table to parquet files partitioned by year and month
time_table.write.partitionBy('year', 'month') \
.parquet(os.path.join(output_data,
'time.parquet'), 'overwrite')
print("time parquet completed")
# read in song data to use for songplays table
song_data = input_data + "/song-data/A/A/A/*.json"
song_df = spark.read.json(song_data)
# extract columns from joined song and log datasets to create songplays table
songplay_df = songplay_df.alias('log_df')
song_df = song_df.alias('song_df')
joined_df = songplay_df.join(song_df, col('log_df.artist') == col(
'song_df.artist_name'), 'inner')
print("creating songplays")
songplays_table = joined_df.select(
col('log_df.datetime').alias('start_time'),
col('log_df.userId').alias('user_id'),
col('log_df.level').alias('level'),
col('song_df.song_id').alias('song_id'),
col('song_df.artist_id').alias('artist_id'),
col('log_df.sessionId').alias('session_id'),
col('log_df.location').alias('location'),
col('log_df.userAgent').alias('user_agent'),
year('log_df.datetime').alias('year'),
month('log_df.datetime').alias('month')) \
.withColumn('songplay_id', monotonically_increasing_id()).dropDuplicates()
songplays_table.createOrReplaceTempView('songplays')
print("songplays created")
# write songplays table to parquet files partitioned by year and month
songplays_table.write.partitionBy('year', 'month').parquet(
os.path.join(output_data,'songplays.parquet'), 'append')
print("songplays.parquet completed")
def main():
spark = create_spark_session()
input_data = "s3a://udacity-dend/"
# output_data = "home/workspace/songs/"
output_data = "s3a://songdb/"
process_song_data(spark, input_data, output_data)
process_log_data(spark, input_data, output_data)
if __name__ == "__main__":
main()