-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
258 lines (177 loc) · 13.4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
<!DOCTYPE html>
<html lang="en-us">
<head>
<meta name="generator" content="Hugo 0.20.7" /><meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>Randomly Jittered</title>
<meta name="description" content="Describe your website">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="robots" content="all,follow">
<meta name="googlebot" content="index,follow,snippet,archive">
<link rel="stylesheet" href="https://NathanielF.github.io/css/bootstrap.min.css">
<link rel="stylesheet" href="//fonts.googleapis.com/css?family=Roboto:400,300,700,400italic">
<link rel="stylesheet" href="https://NathanielF.github.io/css/font-awesome.min.css">
<link rel="stylesheet" href="https://NathanielF.github.io/css/owl.carousel.css">
<link rel="stylesheet" href="https://NathanielF.github.io/css/owl.theme.css">
<link href="https://NathanielF.github.io/css/style.default.css" rel="stylesheet" id="theme-stylesheet">
<link href="https://NathanielF.github.io/css/custom.css" rel="stylesheet">
<link rel="shortcut icon" href="https://NathanielF.github.io/img/favicon.png">
<link href="https://NathanielF.github.io/index.xml" rel="alternate" type="application/rss+xml" title="Randomly Jittered" />
<link href="https://NathanielF.github.io/index.xml" rel="feed" type="application/rss+xml" title="Randomly Jittered" />
</head>
<body>
<div id="all">
<div class="container-fluid">
<div class="row row-offcanvas row-offcanvas-left">
<div id="sidebar" class="col-xs-6 col-sm-4 col-md-3 sidebar-offcanvas">
<div class="sidebar-content">
<h1 class="sidebar-heading"><a href="/">Randomly Jittered</a></h1>
<p class="sidebar-p">This website is where i work through things I don't understand. Feel free to lend a hand; contact details below</p>
<ul class="sidebar-menu">
<li><a href="https://NathanielF.github.io/">Home</a></li>
<li><a href="https://NathanielF.github.io/about/">About</a></li>
<li><a href="https://NathanielF.github.io/contact/">Get in touch</a></li>
<li><a href="https://NathanielF.github.io/blog/">Blog</a></li>
</ul>
<p class="social">
<a href="https://www.facebook.com/nathaniel.forde" data-animate-hover="pulse" class="external facebook">
<i class="fa fa-facebook"></i>
</a>
<a href="mailto:[email protected]" data-animate-hover="pulse" class="email">
<i class="fa fa-envelope"></i>
</a>
<a href="https://www.linkedin.com/in/nathaniel-forde-2477a265/" data-animate-hover="pulse">
<i class="fa fa-linkedin"></i>
</a>
</p>
<div class="copyright">
<p class="credit">
©2017 Nathaniel Forde
| Template by <a href="https://bootstrapious.com/free-templates" class="external">Bootstrapious.com</a>
& ported to Hugo by <a href="https://github.com/kishaningithub">Kishan B</a>
</p>
</div>
</div>
</div>
<div class="col-xs-12 col-sm-8 col-md-9 content-column">
<div class="small-navbar visible-xs">
<button type="button" data-toggle="offcanvas" class="btn btn-ghost pull-left"> <i class="fa fa-align-left"> </i>Menu</button>
<h1 class="small-navbar-heading"><a href="/">Randomly Jittered</a></h1>
</div>
<div class="grid">
<div class="row">
<div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 masonry-item">
<div class="box-masonry">
<a href="https://NathanielF.github.io/portfolio/neuralnet/" title="" class="box-masonry-image with-hover-overlay with-hover-icon">
<img src="/portfolio/neuralNetwork/NeuralNet.png" alt="" class="img-responsive">
</a>
<div class="box-masonry-text">
<h4><a href="https://NathanielF.github.io/portfolio/neuralnet/">Neural Networks</a></h4>
<div class="box-masonry-desription">
<p>The clear limitations of the perceptron prompted criticism of the connectionist paradigm in machine learning. In 1969 Marvin Minsky released a scathing critique of the prospects for this approah elaborating a series of examples which could not (even in principle) be learned by the perceptron. Notably the concept of exclusive disjunction could not be captured by any single perceptron.
In part this limitation stems from the fact that the Heaviside activation function forces us to have a discrete delta between our prediction and target.</p>
</div>
</div>
</div>
</div>
<div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 masonry-item">
<div class="box-masonry">
<a href="https://NathanielF.github.io/portfolio/knn/" title="" class="box-masonry-image with-hover-overlay with-hover-icon">
<img src="/portfolio/knn/knn.png" alt="" class="img-responsive">
</a>
<div class="box-masonry-text">
<h4><a href="https://NathanielF.github.io/portfolio/knn/">The KNN algorithm</a></h4>
<div class="box-masonry-desription">
<p>In this post we will implement the K-Nearest Neighbour classification algorithm. The idea is simply stated that “we are the company we keep”. The algorithm surveys an entire known population and compares each candidate to that population to determine where (along a series of metrics) that candidate best fits. Once we have ascertained a measure of fit we further identify the candidate with the most common class of the members of the population nearest to them in the population.</p>
</div>
</div>
</div>
</div>
<div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 masonry-item">
<div class="box-masonry">
<a href="https://NathanielF.github.io/portfolio/matrixmultiplication/" title="" class="box-masonry-image with-hover-overlay with-hover-icon">
<img src="/portfolio/matrixAlgebra/MMprinciple.svg.png" alt="" class="img-responsive">
</a>
<div class="box-masonry-text">
<h4><a href="https://NathanielF.github.io/portfolio/matrixmultiplication/">Matrices and Machine Learning</a></h4>
<div class="box-masonry-desription">
<p>The ubiquity of matrix manipulation in machine learning means that languages like R and Python, which have been optimised for linear algebra, are very well suited to the task of making robots think. It is less clear to me whether Skynet could be written in Golang?
There are a number of machine learning packages in development but none have the naturalness of an R implementation. To that end I decided to create some of the functionality I need.</p>
</div>
</div>
</div>
</div>
<div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 masonry-item">
<div class="box-masonry">
<a href="https://NathanielF.github.io/portfolio/perceptron/perceptron/" title="" class="box-masonry-image with-hover-overlay with-hover-icon">
<img src="/portfolio/perceptron/perceptron_schematic.png" alt="" class="img-responsive">
</a>
<div class="box-masonry-text">
<h4><a href="https://NathanielF.github.io/portfolio/perceptron/perceptron/">Perceptron</a></h4>
<div class="box-masonry-desription">
<p>Despite sounding like the protagonist of rejected sci-fi script, the perceptron is just a lowly algorithm. Inspired by the model of neuronal triggering patterns, this simple linear classifier was designed to enact a pseudo-biological processing mechanism. As our brain receives and processes different inputs it unconsciously corrects for infelicities in rendering based on a weighting derived from past experience. The thought is that we are progressively conditioned for behaviour that expedites performance of perceptual and physical reflex.</p>
</div>
</div>
</div>
</div>
<div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 masonry-item">
<div class="box-masonry">
<a href="https://NathanielF.github.io/portfolio/ols-and-the-gauss-markov-theorem/" title="" class="box-masonry-image with-hover-overlay with-hover-icon">
<img src="/portfolio/OLS/OLSThreeDimensions.jpg" alt="" class="img-responsive">
</a>
<div class="box-masonry-text">
<h4><a href="https://NathanielF.github.io/portfolio/ols-and-the-gauss-markov-theorem/">Why is OLS BLUE?</a></h4>
<div class="box-masonry-desription">
<p>There is an aesthetic discipline to mathematics as much as there is an expectation of rigour. We shall attempt to showcase the relation between aesthetic dimension of a proof with its explanatory purchase. We shall take as our example a standard proof used in regression analysis to find the slope of a line/plane which maps the trajectory of a series of observed points/locations along a trajectory. Given this problem we can draw a line/plane with the slope and it can be shown that this line (as a function of slope) is the best available line that can be drawn through our points of observation.</p>
</div>
</div>
</div>
</div>
<div class="col-xs-12 col-sm-6 col-md-4 col-lg-3 masonry-item">
<div class="box-masonry">
<a href="https://NathanielF.github.io/portfolio/causal_models/" title="" class="box-masonry-image with-hover-overlay with-hover-icon">
<img src="/portfolio/Causation/null-hypothesis.png" alt="" class="img-responsive">
</a>
<div class="box-masonry-text">
<h4><a href="https://NathanielF.github.io/portfolio/causal_models/">Fisher's Exact P-values</a></h4>
<div class="box-masonry-desription">
<p>In this post we outline an attempt to pin down causal relationships in social science using Fisher’s approach of exact p-values
Fisher’s Exact p-values and Randomised distributions The fundamental problem of causal inference is best illustrated within the ideal of a randomised experiment where we can observe for each patient their previous traits, whether or not they were treated and their individual outcomes under a given treatment plan.
It is easy to see that we are unable to observe the counterfactual outcome for each particular patient under this treatment plan.</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<script src="https://NathanielF.github.io/js/jquery.min.js"></script>
<script src="https://NathanielF.github.io/js/bootstrap.min.js"></script>
<script src="https://NathanielF.github.io/js/jquery.cookie.js"> </script>
<script src="https://NathanielF.github.io/js/ekko-lightbox.js"></script>
<script src="https://NathanielF.github.io/js/jquery.scrollTo.min.js"></script>
<script src="https://NathanielF.github.io/js/masonry.pkgd.min.js"></script>
<script src="https://NathanielF.github.io/js/imagesloaded.pkgd.min.js"></script>
<script src="https://NathanielF.github.io/js/owl.carousel.min.js"></script>
<script src="https://NathanielF.github.io/js/front.js"></script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [['$','$'], ['\\(','\\)']],
displayMath: [['$$','$$'], ['\[','\]']],
processEscapes: true,
processEnvironments: true,
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre'],
TeX: { equationNumbers: { autoNumber: "AMS" },
extensions: ["AMSmath.js", "AMSsymbols.js"] }
}
});
</script>
<script type="text/javascript"
src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
</script>
</body>
</html>