-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaper_gu1.py
200 lines (167 loc) · 6.68 KB
/
paper_gu1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import gurobipy as gp
from gurobipy import GRB
import numpy as np
import matplotlib.pyplot as plt
# Parameters
# Parameters
T = 20 # Prediction horizon (seconds)
dt = 0.1 # Time step (seconds)
N = int(T / dt) # Number of time steps
# State and control bounds
x_min, x_max = 0, np.inf
y_min, y_max = 0, 2.
v_x_min, v_x_max = 0, 20
v_y_min, v_y_max = -1, 1
a_x_min, a_x_max = -2, 2
a_y_min, a_y_max = -0.5, 0.5
j_x_min, j_x_max = -2.5, 2.5
j_y_min, j_y_max = -1, 1
# Other parameters from Table 1
theta_min, theta_max = -0.4, 0.4 # in radians
omega_min, omega_max = -0.26, 0.26 # in radians/s
# Speed bump parameters
x_bump_start, x_bump_end = 30, 50
v_max_bump = 5
# Initial state and reference values
x0, y0 = 0, 0.75
v_x0, v_y0 = 10, 0
a_x0, a_y0 = 0, 0
v_r = 10.0 # Reference speed
y_r = y0 # Reference lateral position (center of the lane)
# wheel base
L = 2.7
# Cost function weights (from Table 1)
q1, q2, q3, q4, q5 = 1, 1, 1, 2, 4
r1, r2 = 4, 4
epsilon = 1e-6
# Create the model
model = gp.Model("SpeedBump_MIQP")
# Create variables
x = model.addVars(N+1, lb=x_min, ub=x_max, name="x")
y = model.addVars(N+1, lb=y_min, ub=y_max, name="y")
v_x = model.addVars(N+1, lb=v_x_min, ub=v_x_max, name="v_x")
v_y = model.addVars(N+1, lb=v_y_min, ub=v_y_max, name="v_y")
a_x = model.addVars(N+1, lb=a_x_min, ub=a_x_max, name="a_x")
a_y = model.addVars(N+1, lb=a_y_min, ub=a_y_max, name="a_y")
j_x = model.addVars(N, lb=j_x_min, ub=j_x_max, name="j_x")
j_y = model.addVars(N, lb=j_y_min, ub=j_y_max, name="j_y")
# Binary variables for speed bump logical constraints
delta1 = model.addVars(N+1, vtype=GRB.BINARY, name="delta1")
delta2 = model.addVars(N+1, vtype=GRB.BINARY, name="delta2")
delta3 = model.addVars(N+1, vtype=GRB.BINARY, name="delta3")
# Set initial conditions
model.addConstr(x[0] == x0)
model.addConstr(y[0] == y0)
model.addConstr(v_x[0] == v_x0)
model.addConstr(v_y[0] == v_y0)
model.addConstr(a_x[0] == a_x0)
model.addConstr(a_y[0] == a_y0)
# Add dynamics constraints
for k in range(N):
model.addConstr(x[k+1] == x[k] + v_x[k]*dt + 0.5*a_x[k]*dt**2 + (1/6)*j_x[k]*dt**3)
model.addConstr(y[k+1] == y[k] + v_y[k]*dt + 0.5*a_y[k]*dt**2 + (1/6)*j_y[k]*dt**3)
model.addConstr(v_x[k+1] == v_x[k] + a_x[k]*dt + 0.5*j_x[k]*dt**2)
model.addConstr(v_y[k+1] == v_y[k] + a_y[k]*dt + 0.5*j_y[k]*dt**2)
model.addConstr(a_x[k+1] == a_x[k] + j_x[k]*dt)
model.addConstr(a_y[k+1] == a_y[k] + j_y[k]*dt)
# Add constraints for theta and omega (equations 5 and 6 in the paper)
for k in range(N+1):
model.addConstr(v_y[k] >= v_x[k] * np.tan(theta_min))
model.addConstr(v_y[k] <= v_x[k] * np.tan(theta_max))
model.addConstr(a_y[k] >= -v_x[k] * omega_max)
model.addConstr(a_y[k] <= v_x[k] * omega_max)
# Speed bump logical constraints using indicator constraints
for k in range(N+1):
# δ1(k) = 1 ⇔ x(k) ≥ x_bump_start
model.addGenConstrIndicator(delta1[k], True, x[k] >= x_bump_start - epsilon)
model.addGenConstrIndicator(delta1[k], False, x[k] <= x_bump_start + epsilon)
# δ2(k) = 1 ⇔ x(k) ≤ x_bump_end
model.addGenConstrIndicator(delta2[k], True, x[k] <= x_bump_end + epsilon)
model.addGenConstrIndicator(delta2[k], False, x[k] >= x_bump_end - epsilon)
# δ3(k) = 1 ⇔ v_x(k) ≤ v_max_bump
model.addGenConstrIndicator(delta3[k], True, v_x[k] <= v_max_bump + epsilon)
model.addGenConstrIndicator(delta3[k], False, v_x[k] >= v_max_bump - epsilon)
# Logical implications from equation 7
model.addConstr(-delta1[k] + delta3[k] <= 0)
model.addConstr(-delta2[k] + delta3[k] <= 0)
model.addConstr(delta1[k] + delta2[k] - delta3[k] <= 1)
# Objective function
obj = gp.QuadExpr()
for k in range(N+1):
obj += q1 * (v_x[k] - v_r)**2 + q2 * a_x[k]**2 + q3 * (y[k] - y_r)**2 + q4 * v_y[k]**2 + q5 * a_y[k]**2
for k in range(N):
obj += r1 * j_x[k]**2 + r2 * j_y[k]**2
model.setObjective(obj, GRB.MINIMIZE)
# Optimize the model
model.optimize()
# Extract results
x_res = [x[k].X for k in range(N+1)]
y_res = [y[k].X for k in range(N+1)]
v_x_res = [v_x[k].X for k in range(N+1)]
v_y_res = [v_y[k].X for k in range(N+1)]
a_x_res = [a_x[k].X for k in range(N+1)]
a_y_res = [a_y[k].X for k in range(N+1)]
j_x_res = [j_x[k].X for k in range(N)]
j_y_res = [j_y[k].X for k in range(N)]
# compute sum of squared jerk
jerk_sum = sum(j_x_res[k]**2 + j_y_res[k]**2 for k in range(N))
print("Sum of squared jerk:", jerk_sum)
# Create the plots
fig, axs = plt.subplots(3, 2, figsize=(15, 20))
# Longitudinal speed plot
axs[0, 0].plot(x_res, v_x_res, 'b-', linewidth=2)
axs[0, 0].set_xlabel('x (m)')
axs[0, 0].set_ylabel('v_x (m/s)')
axs[0, 0].set_title('Longitudinal Speed Profile')
axs[0, 0].axvline(x=x_bump_start, color='r', linestyle='--', label='Speed bump zone')
axs[0, 0].axvline(x=x_bump_end, color='r', linestyle='--')
axs[0, 0].axhline(y=v_max_bump, color='g', linestyle=':', label='Speed limit in bump')
axs[0, 0].fill_between([x_bump_start, x_bump_end], 0, v_x_max, alpha=0.2, color='r')
axs[0, 0].set_xlim(0, max(x_res))
axs[0, 0].set_ylim(0, v_x_max)
axs[0, 0].legend()
axs[0, 0].grid(True, linestyle=':', alpha=0.7)
# Lateral speed plot
axs[0, 1].plot(x_res, v_y_res, 'b-', linewidth=2)
axs[0, 1].set_xlabel('x (m)')
axs[0, 1].set_ylabel('v_y (m/s)')
axs[0, 1].set_title('Lateral Speed Profile')
axs[0, 1].set_xlim(0, max(x_res))
axs[0, 1].set_ylim(v_y_min, v_y_max)
axs[0, 1].grid(True, linestyle=':', alpha=0.7)
# Longitudinal acceleration plot
axs[1, 0].plot(x_res, a_x_res, 'b-', linewidth=2)
axs[1, 0].set_xlabel('x (m)')
axs[1, 0].set_ylabel('a_x (m/s²)')
axs[1, 0].set_title('Longitudinal Acceleration Profile')
axs[1, 0].set_xlim(0, max(x_res))
axs[1, 0].set_ylim(a_x_min, a_x_max)
axs[1, 0].grid(True, linestyle=':', alpha=0.7)
# Lateral acceleration plot
axs[1, 1].plot(x_res, a_y_res, 'b-', linewidth=2)
axs[1, 1].set_xlabel('x (m)')
axs[1, 1].set_ylabel('a_y (m/s²)')
axs[1, 1].set_title('Lateral Acceleration Profile')
axs[1, 1].set_xlim(0, max(x_res))
axs[1, 1].set_ylim(a_y_min, a_y_max)
axs[1, 1].grid(True, linestyle=':', alpha=0.7)
# Longitudinal jerk plot
axs[2, 0].step(x_res[:-1], j_x_res, 'b-', linewidth=2, where='post')
axs[2, 0].set_xlabel('x (m)')
axs[2, 0].set_ylabel('j_x (m/s³)')
axs[2, 0].set_title('Longitudinal Jerk Profile')
axs[2, 0].set_xlim(0, max(x_res))
axs[2, 0].set_ylim(j_x_min, j_x_max)
axs[2, 0].grid(True, linestyle=':', alpha=0.7)
# Lateral jerk plot
axs[2, 1].step(x_res[:-1], j_y_res, 'b-', linewidth=2, where='post')
axs[2, 1].set_xlabel('x (m)')
axs[2, 1].set_ylabel('j_y (m/s³)')
axs[2, 1].set_title('Lateral Jerk Profile')
axs[2, 1].set_xlim(0, max(x_res))
axs[2, 1].set_ylim(j_y_min, j_y_max)
axs[2, 1].grid(True, linestyle=':', alpha=0.7)
plt.tight_layout()
plt.show()
print("Optimization status:", model.status)
print("Objective value:", model.objVal)