-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathavoid_bump_game_cbf.py
375 lines (310 loc) · 13.3 KB
/
avoid_bump_game_cbf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import gurobipy as gp
import matplotlib.pyplot as plt
import numpy as np
from gurobipy import GRB
import pygame
import sys
# Parameters
T = 20 # Prediction horizon (seconds)
dt = 0.3 # Time step (seconds)
N = int(T / dt) # Number of time steps
# Vehicle state bounds
x_min, x_max = 0, np.inf
y_min, y_max = 0, 5 # Road width is 5 meters
v_x_min, v_x_max = 0, 30
v_y_min, v_y_max = -1, 1
a_x_min, a_x_max = -2, 2
a_y_min, a_y_max = -0.5, 0.5
j_x_min, j_x_max = -2.5, 2.5
j_y_min, j_y_max = -1, 1
# Other parameters from Table 1
theta_min, theta_max = -0.4, 0.4 # in radians
omega_min, omega_max = -0.26, 0.26 # in radians/s
# Initial state and reference values
x0, y0 = 0, 3.5 # Starting in the middle of the right lane
v_x0, v_y0 = 10, 0 # Initial speed is 15 m/s
a_x0, a_y0 = 0, 0
v_r = 10.0 # Reference speed
y_r = y0 # Reference lateral position (stay in lane)
# Obstacle parameters (bounding rectangles)
obstacles = [
{'x_center': 40, 'y_center': 3.5, 'L': 10, 'W': 3},
{'x_center': 100, 'y_center': 3.5, 'L': 10, 'W': 3}
]
# Speed bump parameters
x_bump_start, x_bump_end = 60, 65
v_max_bump = 3
# Cost function weights
q1, q2, q3, q4, q5 = 4, 1, 1, 1, 1
r1, r2 = 4, 4
# Create the model
model = gp.Model("Obstacle_Avoidance_MIQP")
# Create variables
x = model.addVars(N + 1, lb=x_min, ub=x_max, name="x")
y = model.addVars(N + 1, lb=y_min, ub=y_max, name="y")
v_x = model.addVars(N + 1, lb=v_x_min, ub=v_x_max, name="v_x")
v_y = model.addVars(N + 1, lb=v_y_min, ub=v_y_max, name="v_y")
a_x = model.addVars(N + 1, lb=a_x_min, ub=a_x_max, name="a_x")
a_y = model.addVars(N + 1, lb=a_y_min, ub=a_y_max, name="a_y")
j_x = model.addVars(N, lb=j_x_min, ub=j_x_max, name="j_x")
j_y = model.addVars(N, lb=j_y_min, ub=j_y_max, name="j_y")
# Binary variables for obstacle avoidance
delta_obs = {}
for obs_id, obs in enumerate(obstacles):
for i in range(4): # 4 ràng buộc cho mỗi chướng ngại vật
delta_obs[obs_id, i] = model.addVars(N + 1, vtype=GRB.BINARY, name=f"delta_obs_{obs_id}_{i}")
delta1 = model.addVars(N+1, vtype=GRB.BINARY, name="delta1")
delta2 = model.addVars(N+1, vtype=GRB.BINARY, name="delta2")
delta3 = model.addVars(N+1, vtype=GRB.BINARY, name="delta3")
delta4 = model.addVars(N+1, vtype=GRB.BINARY, name="delta4")
# Set initial conditions
model.addConstr(x[0] == x0)
model.addConstr(y[0] == y0)
model.addConstr(v_x[0] == v_x0)
model.addConstr(v_y[0] == v_y0)
model.addConstr(a_x[0] == a_x0)
model.addConstr(a_y[0] == a_y0)
# Add vehicle dynamics constraints
for k in range(N):
model.addConstr(x[k + 1] == x[k] + v_x[k] * dt + 0.5 * a_x[k] * dt ** 2 + (1 / 6) * j_x[k] * dt ** 3)
model.addConstr(y[k + 1] == y[k] + v_y[k] * dt + 0.5 * a_y[k] * dt ** 2 + (1 / 6) * j_y[k] * dt ** 3)
model.addConstr(v_x[k + 1] == v_x[k] + a_x[k] * dt + 0.5 * j_x[k] * dt ** 2)
model.addConstr(v_y[k + 1] == v_y[k] + a_y[k] * dt + 0.5 * j_y[k] * dt ** 2)
model.addConstr(a_x[k + 1] == a_x[k] + j_x[k] * dt)
model.addConstr(a_y[k + 1] == a_y[k] + j_y[k] * dt)
# Adding CBF constraints for maintaining y_min <= y <= y_max
# c_min = 1.0 # constant for CBF on y_min
# c_max = 1.0 # constant for CBF on y_max
# for k in range(N + 1):
# # Ràng buộc CBF để đảm bảo y >= y_min
# model.addConstr(v_y[k] >= -c_min * (y[k] - y_min), name=f"CBF_y_min_{k}")
# # Ràng buộc CBF để đảm bảo y <= y_max
# model.addConstr(v_y[k] <= c_max * (y_max - y[k]), name=f"CBF_y_max_{k}")
# Add constraints for theta and omega (equations 5 and 6 in the paper)
for k in range(N+1):
model.addConstr(v_y[k] >= v_x[k] * np.tan(theta_min))
model.addConstr(v_y[k] <= v_x[k] * np.tan(theta_max))
model.addConstr(a_y[k] >= -v_x[k] * omega_max)
model.addConstr(a_y[k] <= v_x[k] * omega_max)
c_bump = 0.1
epsilon = 1e-6
# Speed bump logical constraints using indicator constraints
for k in range(N+1):
# δ1(k) = 1 ⇔ x(k) ≥ x_bump_start
model.addGenConstrIndicator(delta1[k], True, x[k] >= x_bump_start - epsilon)
model.addGenConstrIndicator(delta1[k], False, x[k] <= x_bump_start)
# δ2(k) = 1 ⇔ x(k) ≤ x_bump_end
model.addGenConstrIndicator(delta2[k], True, x[k] <= x_bump_end)
model.addGenConstrIndicator(delta2[k], False, x[k] >= x_bump_end - epsilon)
# δ3(k) = 1 ⇔ v_x(k) ≤ v_max_bump
model.addGenConstrIndicator(delta3[k], True, v_x[k] <= v_max_bump)
model.addGenConstrIndicator(delta3[k], False, v_x[k] >= v_max_bump - epsilon)
#delta 4
model.addGenConstrIndicator(delta4[k], True, a_x[k] <= c_bump * (v_max_bump - v_x[k]), name=f"CBF_bump_{k}")
# Logical implications from equation 7
model.addConstr(-delta1[k] + delta3[k] <= 0)
model.addConstr(-delta2[k] + delta3[k] <= 0)
model.addConstr(delta1[k] + delta2[k] - delta3[k] <= 1)
model.addConstr(delta1[k] + delta2[k] - delta4[k] <= 1)
# Obstacle avoidance constraints (Equation 11 from the paper)
# Thay đổi ràng buộc tránh va chạm chướng ngại vật (Eq. 11 từ bài báo)
d_min = 0.05 # Safety distance from obstacles
for obs_id, obs in enumerate(obstacles):
x_obs, y_obs = obs['x_center'], obs['y_center']
L, W = obs['L'], obs['W']
for k in range(N + 1):
# Eq. 11a
model.addGenConstrIndicator(delta_obs[obs_id, 0][k], True, x[k] <= x_obs - L - d_min)
# Eq. 11b
model.addGenConstrIndicator(delta_obs[obs_id, 1][k], True, x[k] >= x_obs + L + d_min)
# Eq. 11c
model.addGenConstrIndicator(delta_obs[obs_id, 2][k], True, y[k] <= y_obs - W - d_min)
# Eq. 11d
model.addGenConstrIndicator(delta_obs[obs_id, 3][k], True, y[k] >= y_obs + W + d_min)
# Eq. 11e
model.addConstr(delta_obs[obs_id, 0][k] + delta_obs[obs_id, 1][k] + delta_obs[obs_id, 2][k] + delta_obs[obs_id, 3][k] == 1)
# Objective function: Minimize cost of deviation from reference trajectory and control efforts
obj = gp.QuadExpr()
for k in range(N + 1):
obj += q1 * (v_x[k] - v_r) ** 2 + q2 * a_x[k] ** 2 + q3 * (y[k] - y_r) ** 2 + q4 * v_y[k] ** 2 + q5 * a_y[k] ** 2
for k in range(N):
obj += r1 * j_x[k] ** 2 + r2 * j_y[k] ** 2
model.setObjective(obj, GRB.MINIMIZE)
# Optimize the model
model.optimize()
# Extract results
x_res = [x[k].X for k in range(N + 1)]
y_res = [y[k].X for k in range(N + 1)]
v_x_res = [v_x[k].X for k in range(N + 1)]
v_y_res = [v_y[k].X for k in range(N + 1)]
a_x_res = [a_x[k].X for k in range(N + 1)]
a_y_res = [a_y[k].X for k in range(N + 1)]
j_x_res = [j_x[k].X for k in range(N)]
j_y_res = [j_y[k].X for k in range(N)]
#######################################################
import pygame
import sys
import time
import math
# Initialize Pygame
pygame.init()
# Screen setup
width, height = 800, 400
screen = pygame.display.set_mode((width, height))
pygame.display.set_caption("Vehicle Trajectory Visualization")
# Colors
WHITE = (255, 255, 255)
BLUE = (0, 0, 255)
LIGHT_BLUE = (173, 216, 230)
RED = (255, 0, 0)
GREEN = (0, 255, 0)
GRAY = (200, 200, 200)
# Scale factors
scale_x = width / (max(x_res) + 10)
scale_y = height / 10 # Since y_max is 5
# Car dimensions
car_length = 40
car_height = 20
def draw_car(surface, x, y, angle, color):
car = pygame.Surface((car_length, car_height), pygame.SRCALPHA)
pygame.draw.rect(car, color, (0, 0, car_length, car_height))
pygame.draw.polygon(car, color,
[(car_length, car_height // 2), (car_length - 10, 0), (car_length - 10, car_height)])
rotated_car = pygame.transform.rotate(car, -math.degrees(angle))
new_rect = rotated_car.get_rect(center=(x + car_length // 2, y + car_height // 2))
surface.blit(rotated_car, new_rect.topleft)
def calculate_heading(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
return math.atan2(dy, dx)
# Trail list for ego vehicle
ego_trail = []
# Main simulation loop
clock = pygame.time.Clock()
frame = 0
running = True
prev_x, prev_y = x_res[0], y_res[0] # Initialize previous position
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
screen.fill(WHITE)
# Draw road
pygame.draw.rect(screen, GRAY, (0, height // 2 - 50, width, 100))
# Draw speed bump as vertical lines
bump_start = int(x_bump_start * scale_x)
bump_end = int(x_bump_end * scale_x)
pygame.draw.line(screen, GREEN, (bump_start, 0), (bump_start, height), 3)
pygame.draw.line(screen, GREEN, (bump_end, 0), (bump_end, height), 3)
# Draw obstacles
for obs in obstacles:
x_obs = int((obs['x_center'] - obs['L']) * scale_x)
y_obs = int(height - (obs['y_center'] + obs['W'] / 2) * scale_y)
w_obs = int(2 * obs['L'] * scale_x)
h_obs = int(obs['W'] * scale_y)
pygame.draw.rect(screen, RED, (x_obs, y_obs, w_obs, h_obs))
# Draw ego vehicle trail
for pos in ego_trail:
pygame.draw.circle(screen, LIGHT_BLUE, pos, 2)
# Draw ego vehicle
if frame < len(x_res):
ego_x = int(x_res[frame] * scale_x)
ego_y = int(height - y_res[frame] * scale_y)
# Calculate heading using previous and current position
if frame > 0:
ego_heading = calculate_heading(prev_x, prev_y, ego_x, ego_y)
else:
ego_heading = 0 # For the first frame, assume heading is 0
draw_car(screen, ego_x - car_length // 2, ego_y - car_height // 2, ego_heading, BLUE)
# Add current position to trail
ego_trail.append((ego_x, ego_y))
# Display frame number and vehicle position
font = pygame.font.Font(None, 36)
text = font.render(f"Frame: {frame}, x: {x_res[frame]:.2f}, y: {y_res[frame]:.2f}", True, (0, 0, 0))
screen.blit(text, (10, 10))
# Update previous position for next frame
prev_x, prev_y = ego_x, ego_y
frame += 1
else:
# Display end message when simulation is complete
font = pygame.font.Font(None, 36)
text = font.render("Simulation Complete", True, (0, 0, 0))
screen.blit(text, (width // 2 - 100, height // 2))
pygame.display.flip()
clock.tick(30) # Adjust for desired frame rate
time.sleep(0.1) # Add a small delay to slow down the simulation
pygame.quit()
#######################################################
# Plot results
fig, axs = plt.subplots(3, 2, figsize=(15, 20))
# 1. Quỹ đạo xe và chướng ngại vật
axs[0, 0].plot(x_res, y_res, 'b-', linewidth=2, label='Vehicle Trajectory')
axs[0, 0].set_xlabel('x (m)')
axs[0, 0].set_ylabel('y (m)')
axs[0, 0].set_title('Vehicle Trajectory with Obstacles and Speed Bump')
# Vẽ chướng ngại vật
# L: 0x, W: 0y
for obs in obstacles:
rect = plt.Rectangle((obs['x_center'] - obs['L'], obs['y_center'] - obs['W']),
2*obs['L'], 2*obs['W'], fill=True, facecolor='red', alpha=0.5)
axs[0, 0].add_patch(rect)
# Vẽ khu vực speed bump
axs[0, 0].axvline(x=x_bump_start, color='g', linestyle='--', label='Speed bump start')
axs[0, 0].axvline(x=x_bump_end, color='g', linestyle='--', label='Speed bump end')
axs[0, 0].fill_between([x_bump_start, x_bump_end], 0, 5, alpha=0.2, color='g')
axs[0, 0].set_xlim(0, max(x_res) + 10)
axs[0, 0].set_ylim(0, 5)
axs[0, 0].legend()
axs[0, 0].grid(True)
# Thêm chú thích cho chướng ngại vật và speed bump
axs[0, 0].text(80, 1.5, 'Obstacle 1', ha='center', va='center')
axs[0, 0].text(200, 3.5, 'Obstacle 2', ha='center', va='center')
axs[0, 0].text((x_bump_start + x_bump_end) / 2, 0.5, 'Speed Bump', ha='center', va='center')
# 2. Biểu đồ vận tốc
# Longitudinal speed plot
axs[0, 1].plot(x_res, v_x_res, 'b-', linewidth=2)
axs[0, 1].set_xlabel('x (m)')
axs[0, 1].set_ylabel('v_x (m/s)')
axs[0, 1].set_title('Longitudinal Speed Profile')
axs[0, 1].axvline(x=x_bump_start, color='r', linestyle='--', label='Speed bump zone')
axs[0, 1].axvline(x=x_bump_end, color='r', linestyle='--')
axs[0, 1].axhline(y=v_max_bump, color='g', linestyle=':', label='Speed limit in bump')
axs[0, 1].fill_between([x_bump_start, x_bump_end], 0, v_x_max, alpha=0.2, color='r')
axs[0, 1].set_xlim(0, max(x_res))
axs[0, 1].set_ylim(0, v_x_max)
axs[0, 1].legend()
axs[0, 1].grid(True, linestyle=':', alpha=0.7)
# 3. Biểu đồ gia tốc
axs[1, 0].plot(x_res, a_x_res, 'b-', label='a_x')
axs[1, 0].plot(x_res, a_y_res, 'r-', label='a_y')
axs[1, 0].set_xlabel('x (m)')
axs[1, 0].set_ylabel('Acceleration (m/s²)')
axs[1, 0].set_title('Acceleration Profiles')
axs[1, 0].legend()
axs[1, 0].grid(True)
# 4. Biểu đồ jerk
axs[1, 1].step(x_res[:-1], j_x_res, 'b-', label='j_x', where='post')
axs[1, 1].step(x_res[:-1], j_y_res, 'r-', label='j_y', where='post')
axs[1, 1].set_xlabel('x (m)')
axs[1, 1].set_ylabel('Jerk (m/s³)')
axs[1, 1].set_title('Jerk Profiles')
axs[1, 1].legend()
axs[1, 1].grid(True)
# 5. Góc lái (được tính từ v_y và v_x)
steering_angle = [np.arctan2(v_y_res[i], v_x_res[i]) for i in range(len(v_x_res))]
axs[2, 0].plot(x_res, steering_angle, 'g-')
axs[2, 0].set_xlabel('x (m)')
axs[2, 0].set_ylabel('Steering Angle (rad)')
axs[2, 0].set_title('Steering Angle Profile')
axs[2, 0].grid(True)
# 6. Tốc độ góc (được tính từ a_y và v_x)
yaw_rate = [a_y_res[i] / v_x_res[i] if v_x_res[i] != 0 else 0 for i in range(len(v_x_res))]
axs[2, 1].plot(x_res, yaw_rate, 'm-')
axs[2, 1].set_xlabel('x (m)')
axs[2, 1].set_ylabel('Yaw Rate (rad/s)')
axs[2, 1].set_title('Yaw Rate Profile')
axs[2, 1].grid(True)
plt.tight_layout()
plt.show()
print("Optimization status:", model.status)
print("Objective value:", model.objVal)