forked from ferchault/APHF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpyscf-test.py
106 lines (80 loc) · 2.57 KB
/
pyscf-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#!/usr/bin/env python
#%%
from pyscf import scf, gto, qmmm
import numpy as np
a = 1.809 * np.sin(104.52 / 180 * np.pi / 2) / 1.8897259886
b = 1.809 * np.cos(104.52 / 180 * np.pi / 2) / 1.8897259886
mol = gto.M(atom=f"H {a} 0 0; H {-a} 0 0; O 0 {b} 0", basis="sto-3g")
calc = scf.RHF(mol)
calc.kernel()
print(calc.mo_energy)
print("H2 plain simple")
mol = gto.M(atom=f"H 0 0 0; H {1.4/1.8897259886} 0 0", basis="sto-3g")
calc = scf.RHF(mol)
calc.kernel()
print(calc.mo_energy)
print(calc.energy_elec()[0])
print("H2 alchemy")
def add_qmmm(calc, mol, deltaZ):
mf = qmmm.mm_charge(calc, mol.atom_coords() / 1.8897259886, deltaZ)
def energy_nuc(self):
q = mol.atom_charges().astype(np.float)
q += deltaZ
return mol.energy_nuc(q)
mf.energy_nuc = energy_nuc.__get__(mf, mf.__class__)
return mf
mol = gto.M(atom=f"H 0 0 0; H {1.4/1.8897259886} 0 0", basis="sto-3g")
calc = add_qmmm(scf.RHF(mol), mol, np.array((1, -1)))
calc.kernel()
print(calc.mo_energy)
# %%
def get_energy(lval):
def add_qmmm(calc, mol, deltaZ):
mf = qmmm.mm_charge(calc, mol.atom_coords() / 1.8897259886, deltaZ)
def energy_nuc(self):
q = mol.atom_charges().astype(float)
q += deltaZ
return mol.energy_nuc(q)
mf.energy_nuc = energy_nuc.__get__(mf, mf.__class__)
return mf
mol = gto.M(atom=f"H 0 0 0; H {1.4/1.8897259886} 0 0", basis="def2-tzvp")
calc = add_qmmm(scf.RHF(mol), mol, float(lval) * np.array((1, -1)))
calc.kernel()
return calc.energy_elec()[0]
get_energy(0), get_energy(1)
#%%
import findiff
import functools
def taylor(func, around, at, orders, delta):
@functools.lru_cache(maxsize=100)
def callfunc(lval):
return func(lval)
total = 0
final = callfunc(at)
for order in range(orders):
if order == 0:
weights = np.array([1.0])
offsets = np.array([0.0])
else:
stencil = findiff.coefficients(deriv=order, acc=2)["center"]
weights = stencil["coefficients"]
offsets = stencil["offsets"]
coefficient = (
sum(
[
callfunc(around + delta * shift) * weight
for shift, weight in zip(offsets, weights)
]
)
/ delta ** order
)
coefficient *= (at - around) ** order / np.math.factorial(order)
total += coefficient
print(order, coefficient, total, abs(total - final))
taylor(get_energy, 0, 1, 8, 0.001)
# %%
# %%
get_energy(0), get_energy(1)
# %%
1.4/1.8897259886
# %%