forked from ferchault/APHF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatrices.py
425 lines (316 loc) · 9.51 KB
/
matrices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
"""
Copyright (C) 2015 Rocco Meli, 2021 Guido Falk von Rudorff
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
from basis import *
from integrals import *
import numpy.linalg as la
def S_overlap(basis):
"""
Compute overlap matrix S.
INPUT:
BASIS: basis set
OUTPUT:
S: Overlap matrix
"""
# Size of the basis set
K = basis.K
# List of basis functions
B = basis.basis()
S = np.array(mpmath.zeros(K, K).tolist())
for i, b1 in enumerate(B):
for j, b2 in enumerate(B):
for a1, d1 in zip(b1["a"], b1["d"]):
for a2, d2 in zip(b2["a"], b2["d"]):
R1 = b1["R"]
R2 = b2["R"]
tmp = d1.conjugate() * d2
tmp *= overlap(
b1["lx"],
b1["ly"],
b1["lz"],
b2["lx"],
b2["ly"],
b2["lz"],
a1,
a2,
R1,
R2,
)
S[i, j] = tmp + S[i, j]
return S
def X_transform(S):
"""
Compute the transformation matrix X using canonical orthogonalization.
INPUT:
S: Overlap matrix
OUTPUT:
X: Transformation matrix
Source:
Modern Quantum Chemistry
Szabo and Ostlund
Dover
1989
"""
s, U = mpmath.mp.eighe(NP2MP(S))
s = np.array(s)
U = MP2NP(U)
s = np.diag(s ** (-mpmath.mp.mpf("1.0") / mpmath.mp.mpf("2.0")))
X = np.dot(U, s)
return X
def T_kinetic(basis):
"""
Compute kinetic matrix T.
INPUT:
BASIS: basis set
OUTPUT:
T: Kinetic matrix
"""
# Size of the basis set
K = basis.K
# List of basis functions
B = basis.basis()
T = np.array(mpmath.zeros(K, K).tolist())
for i, b1 in enumerate(B):
for j, b2 in enumerate(B):
for a1, d1 in zip(b1["a"], b1["d"]):
for a2, d2 in zip(b2["a"], b2["d"]):
R1 = b1["R"]
R2 = b2["R"]
tmp = d1.conjugate() * d2
tmp *= kinetic(
b1["lx"],
b1["ly"],
b1["lz"],
b2["lx"],
b2["ly"],
b2["lz"],
a1,
a2,
R1,
R2,
)
T[i, j] += tmp
return T
def V_nuclear(basis, atom):
"""
Compute nuclear-electron potential energy matrix Vn.
INPUT:
BASIS: basis set
ATOM: atom specifications (position and charge)
OUTPUT:
VN: Nuclear-attraction matrix for atom ATOM
"""
# Size of the basis set
K = basis.K
# List of basis functions
B = basis.basis()
# Nuclear coordinates
Rn = atom.R
# Nuclear charge
Zn = atom.Z
Vn = np.array(mpmath.zeros(K, K).tolist())
for i, b1 in enumerate(B):
for j, b2 in enumerate(B):
for a1, d1 in zip(b1["a"], b1["d"]):
for a2, d2 in zip(b2["a"], b2["d"]):
R1 = b1["R"]
R2 = b2["R"]
tmp = d1.conjugate() * d2
tmp *= nuclear(
b1["lx"],
b1["ly"],
b1["lz"],
b2["lx"],
b2["ly"],
b2["lz"],
a1,
a2,
R1,
R2,
Rn,
Zn,
)
Vn[i, j] += tmp
return Vn
def H_core(basis, molecule):
"""
Compute core Hamiltonian (sum of T and all the VN)
INPUT:
BASIS: basis set
MOLECULE: molecule, collection of atom objects
OUTPUT:
(T + VN): Core Hamitlonian
"""
T = T_kinetic(basis)
# print("Kinetic energy")
# print(T)
# Size of the basis set
K = basis.K
Vn = np.array(mpmath.zeros(K, K).tolist())
Vnn = np.array(mpmath.zeros(K, K).tolist())
for atom in molecule:
Vnn = V_nuclear(basis, atom)
# print("Nuclear attraction Vn")
# print(Vnn)
Vn += Vnn
# print("Total nuclear attraction matrix")
# print(Vn)
return T + Vn
def P_density(C, N):
"""
Compute dansity matrix.
INPUT:
C: Matrix of coefficients
N: Number of electrons
OUTPUT:
P: density matrix
Source:
Modern Quantum Chemistry
Szabo and Ostlund
Dover
1989
"""
# Size of the basis set
K = C.shape[0]
P = np.array(mpmath.zeros(K, K).tolist())
for i in range(K):
for j in range(K):
for k in range(int(N / 2)): # TODO Only for RHF
P[i, j] += 2 * C[i, k] * C[j, k].conjugate()
return P
def G_ee_cache(K, ee):
Gfactor = np.zeros((K, K, K, K)).astype(mpmath.mp.mpf)
q = mpmath.mp.mpf("0.5")
for i in range(K):
for j in range(K):
for k in range(K):
for l in range(K):
Gfactor[i, j, k, l] = ee[i, j, k, l] - q * ee[i, l, k, j]
return Gfactor
def G_ee(basis, Gfactor, P):
"""
Compute core Hamiltonian matrix.
INPUT:
BASIS: Basis set.
P: Density matrix
EE: Two-electron integrals
OUTPUT:
G: Electron-electron interaction matrix
"""
# Size of the basis set
K = basis.K
G = np.array(mpmath.zeros(K, K).tolist())
q = mpmath.mp.mpf("0.5")
for i, j, k, l in it.product(range(K), repeat=4):
G[i, j] += P[k, l] * Gfactor[i, j, k, l]
return G
if __name__ == "__main__":
"""
Results compared with
Modern Quantum Chemistry
Szabo and Ostlund
Dover
1989
and
The Mathematica Journal
Evaluation of Gaussian Molecular Integrals
I. Overlap Integrals
Minhhuy Hô and Julio Manuel Hernández-Pérez
2012
and
The Mathematica Journal
Evaluation of Gaussian Molecular Integrals
II. Kinetic-Energy Integrals
Minhhuy Hô and Julio Manuel Hernández-Pérez
2013
and
The Mathematica Journal
Evaluation of Gaussian Molecular Integrals
III. Nuclear-Electron attraction Integrals
Minhhuy Hô and Julio Manuel Hernández-Pérez
2014
"""
# H2
H2 = [Atom("H", (0, 0, 0), 1, ["1s"]), Atom("H", (0, 0, 1.4), 1, ["1s"])]
# Create the basis set
sto3g_H2 = STO3G(H2)
# Compute matrices
S_H2 = S_overlap(sto3g_H2)
T_H2 = T_kinetic(sto3g_H2)
Vn1_H2 = V_nuclear(sto3g_H2, H2[0])
Vn2_H2 = V_nuclear(sto3g_H2, H2[1])
H_core_H2 = H_core(sto3g_H2, H2)
print("###########")
print("H2 molecule")
print("###########")
print("\nOverlap matrix S:")
print(S_H2)
print("\nKinetic matrix T:")
print(T_H2)
print("\nElectron-nucleus interaction " + H2[0].name + " :")
print(Vn1_H2)
print("\nElectron-nucleus interaction " + H2[1].name + " :")
print(Vn2_H2)
print("\nCore Hamiltonian:")
print(H_core_H2)
# HeH+
HeH = [Atom("H", (0, 0, 0), 1, ["1s"]), Atom("He", (0, 0, 1.4632), 2, ["1s"])]
# Create the basis set
sto3g_HeH = STO3G(HeH)
# Compute matrices
S_HeH = S_overlap(sto3g_HeH)
T_HeH = T_kinetic(sto3g_HeH)
Vn1_HeH = V_nuclear(sto3g_HeH, HeH[0])
Vn2_HeH = V_nuclear(sto3g_HeH, HeH[1])
H_core_HeH = H_core(sto3g_HeH, HeH)
print("\n\n\n")
print("############")
print("HeH molecule")
print("############")
print("\nOverlap matrix S:")
print(S_HeH)
print("\nKinetic matrix T:")
print(T_HeH)
print("\nElectron-nucleus interaction " + HeH[0].name + " :")
print(Vn1_HeH)
print("\nElectron-nucleus interaction " + HeH[1].name + " :")
print(Vn2_HeH)
print("\nCore Hamiltonian:")
print(H_core_HeH)
# H2O
H2O = [
Atom("H", (0, +1.43233673, -0.96104039), 1, ["1s"]),
Atom("H", (0, -1.43233673, -0.96104039), 1, ["1s"]),
Atom("O", (0, 0, 0.24026010), 8, ["1s", "2s", "2p"]),
]
sto3g_H2O = STO3G(H2O)
# Overlap matrix
S_H2O = S_overlap(sto3g_H2O)
T_H2O = T_kinetic(sto3g_H2O)
Vn1_H2O = V_nuclear(sto3g_H2O, H2O[0])
Vn2_H2O = V_nuclear(sto3g_H2O, H2O[1])
Vn3_H2O = V_nuclear(sto3g_H2O, H2O[2])
Vn_H2O = Vn1_H2O + Vn2_H2O + Vn3_H2O
H_core_H2O = H_core(sto3g_H2O, H2O)
print("\n\n\n")
print("############")
print("H2O molecule")
print("############")
print("\nOverlap matrix S:")
print(S_H2O)
print("\nKinetic matrix T:")
print(T_H2O)
print("\nTotal electron-nucleus interaction:")
print(Vn_H2O)
print("\nCore hamiltonian:")
print(H_core_H2O)