From 7eb04f43356333386b4361361188e3810620a0d8 Mon Sep 17 00:00:00 2001 From: Guillermo Marcus Date: Fri, 26 Jan 2024 18:31:27 +0100 Subject: [PATCH] Release v0.16.2 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Signed-off-by: The Sionna Team Merged-by: Guillermo Marcus <4169784+gmarcusm@users.noreply.github.com> Co-authored-by: Jakob Hoydis <5190129+jhoydis@users.noreply.github.com> Co-authored-by: Fayçal Ait-Aoudi <43564757+faycalaa@users.noreply.github.com> Co-authored-by: Sebastian Cammerer <18167671+SebastianCa@users.noreply.github.com> Co-authored-by: Guillermo Marcus <4169784+gmarcusm@users.noreply.github.com> Co-authored-by: Merlin Nimier-David Co-authored-by: Neal Becker --- README.md | 6 +- doc/source/_ext/made_with_sionna.py | 33 ++++++--- doc/source/api/rt_scene.rst.txt | 14 ++-- doc/source/installation.rst | 6 +- doc/source/made_with_sionna.rst | 36 +++++---- examples/Neural_Receiver.ipynb | 110 ++++++++++++++-------------- requirements.txt | 4 +- setup.cfg | 4 +- sionna/__init__.py | 2 +- sionna/fec/crc.py | 5 ++ sionna/fec/ldpc/decoding.py | 103 +++++++------------------- sionna/rt/coverage_map.py | 3 +- sionna/rt/previewer.py | 33 ++++++++- sionna/rt/scene.py | 34 ++++++--- sionna/rt/solver_base.py | 2 + sionna/rt/solver_cm.py | 76 +++++++++++-------- sionna/rt/solver_paths.py | 4 +- sionna/rt/utils.py | 32 +++----- test/unit/fec/test_ldpc_decoding.py | 30 ++++++++ test/unit/rt/test_coverage_map.py | 2 +- 20 files changed, 296 insertions(+), 243 deletions(-) diff --git a/README.md b/README.md index b5f8c213..808add9e 100644 --- a/README.md +++ b/README.md @@ -15,7 +15,7 @@ In order to run the tutorial notebooks on your machine, you also need [JupyterLa You can alternatively test them on [Google Colab](https://colab.research.google.com/). Although not necessary, we recommend running Sionna in a [Docker container](https://www.docker.com). -Sionna requires [TensorFlow 2.10-2.13](https://www.tensorflow.org/install) and Python 3.8-3.11. We recommend Ubuntu 22.04. Earlier versions of TensorFlow may still work but are not recommended because of known, unpatched CVEs. +Sionna requires [TensorFlow 2.10-2.15](https://www.tensorflow.org/install) and Python 3.8-3.11. We recommend Ubuntu 22.04. Earlier versions of TensorFlow may still work but are not recommended because of known, unpatched CVEs. To run the ray tracer on CPU, [LLVM](https://llvm.org) is required by DrJit. Please check the [installation instructions for the LLVM backend](https://drjit.readthedocs.io/en/latest/firststeps-py.html#llvm-backend). @@ -38,7 +38,7 @@ On macOS, you need to install [tensorflow-macos](https://github.com/apple/tensor ``` >>> import sionna >>> print(sionna.__version__) - 0.16.1 + 0.16.2 ``` 3.) Once Sionna is installed, you can run the [Sionna "Hello, World!" example](https://nvlabs.github.io/sionna/examples/Hello_World.html), have a look at the [quick start guide](https://nvlabs.github.io/sionna/quickstart.html), or at the [tutorials](https://nvlabs.github.io/sionna/tutorials.html). @@ -97,7 +97,7 @@ We recommend to do this within a [virtual environment](https://docs.python.org/3 ``` >>> import sionna >>> print(sionna.__version__) - 0.16.1 + 0.16.2 ``` ## License and Citation diff --git a/doc/source/_ext/made_with_sionna.py b/doc/source/_ext/made_with_sionna.py index 47338fa7..dba3ee92 100644 --- a/doc/source/_ext/made_with_sionna.py +++ b/doc/source/_ext/made_with_sionna.py @@ -70,45 +70,59 @@ def run(self): pass html_str = f'' \ - f'

{title}

' \ + f'

{title}

' \ f'{authors}' \ f'

' \ f'Released in {year} and based on Sionna v{version}.

' \ f'
'\ f'' + is_first_link = True if link_arxiv is not None: html_str += f''\ + f'Read on arXiv' + is_first_link = False if link_pdf is not None: html_str += f''\ + f'' + is_first_link = False if link_github is not None: html_str += f''\ + f'' + is_first_link = False if link_code is not None: html_str += f''\ + f'' + is_first_link = False if link_colab is not None: - html_str += f'' + is_first_link = False html_str += f'
'\ f''\ f'Arxiv logo'\ - f''\ + f''\ f''\ - f'Read on arXiv'\ + f' style="padding: 0 0 0 {0 if is_first_link else 30}px;">'\ + f''\ + f''\ + f''\ f''\ - f''\ f' View Paper'\ + f' style="padding: 0 0 0 {0 if is_first_link else 30}px;">'\ f''\ f''\ + f''\ + f''\ f' View on GitHub'\ + f' style="padding: 0 0 0 {0 if is_first_link else 30}px;">'\ f''\ f''\ + f''\ + f''\ f' View Code'\ + html_str += f''\ f''\ f'Colab logo'\ f''\ f'Run in Google Colab
'\ f'

{abstract}

' @@ -133,5 +148,3 @@ def setup(app): 'parallel_read_safe': True, 'parallel_write_safe': True, } - - diff --git a/doc/source/api/rt_scene.rst.txt b/doc/source/api/rt_scene.rst.txt index 116b63b1..63fcf769 100644 --- a/doc/source/api/rt_scene.rst.txt +++ b/doc/source/api/rt_scene.rst.txt @@ -138,15 +138,15 @@ compute_paths .. autofunction:: sionna.rt.Scene.compute_paths trace_paths -------------- +----------- .. autofunction:: sionna.rt.Scene.trace_paths compute_fields -------------- +-------------- .. autofunction:: sionna.rt.Scene.compute_fields coverage_map -------------- +------------ .. autofunction:: sionna.rt.Scene.coverage_map load_scene @@ -154,7 +154,7 @@ load_scene .. autofunction:: sionna.rt.load_scene preview --------- +------- .. autofunction:: sionna.rt.Scene.preview render @@ -162,7 +162,7 @@ render .. autofunction:: sionna.rt.Scene.render render_to_file ---------------- +-------------- .. autofunction:: sionna.rt.Scene.render_to_file Example Scenes @@ -218,13 +218,13 @@ double_reflector (`Blender file `__) triple_reflector ------------------ +---------------- .. autodata:: sionna.rt.scene.triple_reflector :annotation: (`Blender file `__) Box ----- +--- .. autodata:: sionna.rt.scene.box :annotation: (`Blender file `__) diff --git a/doc/source/installation.rst b/doc/source/installation.rst index 841d1c07..e70a8edd 100644 --- a/doc/source/installation.rst +++ b/doc/source/installation.rst @@ -7,7 +7,7 @@ You can alternatively test them on `Google Colab `_. .. note:: - Sionna requires `TensorFlow 2.10-2.13 `_ and Python 3.8-3.11. + Sionna requires `TensorFlow 2.10-2.15 `_ and Python 3.8-3.11. We recommend Ubuntu 22.04. Earlier versions of TensorFlow may still work but are not recommended because of known, unpatched CVEs. @@ -39,7 +39,7 @@ e.g., using `conda `_. On macOS, you need to install `ten >>> import sionna >>> print(sionna.__version__) - 0.16.1 + 0.16.2 3.) Once Sionna is installed, you can run the `Sionna "Hello, World!" example `_, have a look at the `quick start guide `_, or at the `tutorials `_. @@ -111,4 +111,4 @@ e.g., using `conda `_. >>> import sionna >>> print(sionna.__version__) - 0.16.1 + 0.16.2 diff --git a/doc/source/made_with_sionna.rst b/doc/source/made_with_sionna.rst index e402b7a7..8a827233 100644 --- a/doc/source/made_with_sionna.rst +++ b/doc/source/made_with_sionna.rst @@ -4,13 +4,33 @@ We love to see how Sionna is used by other researchers! For this reason, you find below links to papers whose authors have also published Sionna-based simulation code. + +Community-made tools +-------------------- + +.. H3 headers are not displayed (CSS rule), so we use H4 below instead. +.. Dummy H3 header for section nesting consistency. + +. +* + +.. made-with-sionna:: + :title: OpenStreetMap to Sionna Scene in Python + :authors: Manoj Kumar Joshi + :year: January 2024 + :version: 0.15 + :link_github: https://github.com/manoj-kumar-joshi/sionna_osm_scene + :abstract: This Jupyter notebook shows how to create a Sionna scene (Mitsuba format) in Python code from OpenStreetMap data. Buildings are extruded and meshes for roads are created in a region specified by the user. It is an alternative to the Blender-based workflow presented in this video. + + List of Projects ---------------- If you want your paper and code be listed here, please send an email to `sionna@nvidia.com `_ with links to the paper (e.g., `arXiv `_) and code repository (e.g., `GitHub `_). -Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes -***************************************************************** +. +* + .. made-with-sionna:: :title: Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes :authors: Anqi Gong, Sebastian Cammerer, Joseph M. Renes @@ -20,8 +40,6 @@ Graph Neural Networks for Enhanced Decoding of Quantum LDPC Codes :link_github: https://github.com/gongaa/Feedback-GNN :abstract: In this work, we propose a fully differentiable iterative decoder for quantum low-density parity-check (LDPC) codes. The proposed algorithm is composed of classical belief propagation (BP) decoding stages and intermediate graph neural network (GNN) layers. Both component decoders are defined over the same sparse decoding graph enabling a seamless integration and scalability to large codes. The core idea is to use the GNN component between consecutive BP runs, so that the knowledge from the previous BP run, if stuck in a local minima caused by trapping sets or short cycles in the decoding graph, can be leveraged to better initialize the next BP run. By doing so, the proposed decoder can learn to compensate for sub-optimal BP decoding graphs that result from the design constraints of quantum LDPC codes. Since the entire decoder remains differentiable, gradient descent-based training is possible. We compare the error rate performance of the proposed decoder against various post-processing methods such as random perturbation, enhanced feedback, augmentation, and ordered-statistics decoding (OSD) and show that a carefully designed training process lowers the error-floor significantly. As a result, our proposed decoder outperforms the former three methods using significantly fewer post-processing attempts. -Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling -******************************************************************** .. made-with-sionna:: :title: Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling :authors: Jakob Hoydis, Fayçal Aït Aoudia, Sebastian Cammerer, Merlin Nimier-David, Nikolaus Binder, Guillermo Marcus, Alexander Keller @@ -33,8 +51,6 @@ Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling :abstract: Sionna is a GPU-accelerated open-source library for link-level simulations based on TensorFlow. Its latest release (v0.14) integrates a differentiable ray tracer (RT) for the simulation of radio wave propagation. This unique feature allows for the computation of gradients of the channel impulse response and other related quantities with respect to many system and environment parameters, such as material properties, antenna patterns, array geometries, as well as transmitter and receiver orientations and positions. In this paper, we outline the key components of Sionna RT and showcase example applications such as learning of radio materials and optimizing transmitter orientations by gradient descent. While classic ray tracing is a crucial tool for 6G research topics like reconfigurable intelligent surfaces, integrated sensing and communications, as well as user localization, differentiable ray tracing is a key enabler for many novel and exciting research directions, for example, digital twins. -DUIDD: Deep-Unfolded Interleaved Detection and Decoding for MIMO Wireless Systems -********************************************************************************* .. made-with-sionna:: :title: DUIDD: Deep-Unfolded Interleaved Detection and Decoding for MIMO Wireless Systems :authors: Reinhard Wiesmayr, Chris Dick, Jakob Hoydis, Christoph Studer @@ -44,8 +60,6 @@ DUIDD: Deep-Unfolded Interleaved Detection and Decoding for MIMO Wireless System :link_github: https://github.com/IIP-Group/DUIDD :abstract: Iterative detection and decoding (IDD) is known to achieve near-capacity performance in multi-antenna wireless systems. We propose deep-unfolded interleaved detection and decoding (DUIDD), a new paradigm that reduces the complexity of IDD while achieving even lower error rates. DUIDD interleaves the inner stages of the data detector and channel decoder, which expedites convergence and reduces complexity. Furthermore, DUIDD applies deep unfolding to automatically optimize algorithmic hyperparameters, soft-information exchange, message damping, and state forwarding. We demonstrate the efficacy of DUIDD using NVIDIA's Sionna link-level simulator in a 5G-near multi-user MIMO-OFDM wireless system with a novel low-complexity soft-input soft-output data detector, an optimized low-density parity-check decoder, and channel vectors from a commercial ray-tracer. Our results show that DUIDD outperforms classical IDD both in terms of block error rate and computational complexity. -Bit Error and Block Error Rate Training for ML-Assisted Communication -********************************************************************* .. made-with-sionna:: :title: Bit Error and Block Error Rate Training for ML-Assisted Communication :authors: Reinhard Wiesmayr, Gian Marti, Chris Dick, Haochuan Song, Christoph Studer @@ -66,8 +80,6 @@ Bit Error and Block Error Rate Training for ML-Assisted Communication of the proposed loss functions as well as of SNR deweighting is shown through simulations in NVIDIA Sionna. -GNNs for Channel Decoding -************************* .. made-with-sionna:: :title: Graph Neural Networks for Channel Decoding :authors: Sebastian Cammerer, Jakob Hoydis, Fayçal Aït Aoudia, Alexander Keller @@ -78,8 +90,6 @@ GNNs for Channel Decoding :link_colab: https://colab.research.google.com/github/NVlabs/gnn-decoder/blob/master/GNN_decoder_standalone.ipynb :abstract: We propose a fully differentiable graph neural network (GNN)-based architecture for channel decoding and showcase competitive decoding performance for various coding schemes, such as low-density parity-check (LDPC) and BCH codes. The idea is to let a neural network (NN) learn a generalized message passing algorithm over a given graph that represents the forward error correction code structure by replacing node and edge message updates with trainable functions. -DL-based Synchronization of NB-IoT -********************************** .. made-with-sionna:: :title: Deep Learning-Based Synchronization for Uplink NB-IoT :authors: Fayçal Aït Aoudia, Jakob Hoydis, Sebastian Cammerer, Matthijs Van Keirsbilck, Alexander Keller @@ -88,5 +98,3 @@ DL-based Synchronization of NB-IoT :link_arxiv: https://arxiv.org/pdf/2205.10805.pdf :link_github: https://github.com/NVlabs/nprach_synch :abstract: We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) and carrier frequency offset (CFO) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT). The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications. - - diff --git a/examples/Neural_Receiver.ipynb b/examples/Neural_Receiver.ipynb index 92703546..64d10aee 100644 --- a/examples/Neural_Receiver.ipynb +++ b/examples/Neural_Receiver.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "18417057", + "id": "1e3c39cc", "metadata": {}, "source": [ "# Neural Receiver for OFDM SIMO Systems" @@ -10,7 +10,7 @@ }, { "cell_type": "markdown", - "id": "e8fac294", + "id": "4577e86a", "metadata": {}, "source": [ "In this notebook, you will learn how to train a neural receiver that implements OFDM detection.\n", @@ -22,7 +22,7 @@ }, { "cell_type": "markdown", - "id": "3e1a6748", + "id": "04dbfdd8", "metadata": {}, "source": [ "![System Model]()" @@ -30,7 +30,7 @@ }, { "cell_type": "markdown", - "id": "8dde69c0", + "id": "ae7f463e", "metadata": {}, "source": [ "Two baselines are considered for benchmarking, which are shown in the figure above.\n", @@ -45,7 +45,7 @@ }, { "cell_type": "markdown", - "id": "d11c0f41", + "id": "586b1e0b", "metadata": {}, "source": [ "* [GPU Configuration and Imports](#GPU-Configuration-and-Imports)\n", @@ -62,7 +62,7 @@ }, { "cell_type": "markdown", - "id": "d21de582", + "id": "69d31188", "metadata": {}, "source": [ "## GPU Configuration and Imports " @@ -71,7 +71,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "64edb852", + "id": "6393b2fe", "metadata": {}, "outputs": [], "source": [ @@ -104,7 +104,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "9923c2bc", + "id": "6244a108", "metadata": {}, "outputs": [], "source": [ @@ -131,7 +131,7 @@ }, { "cell_type": "markdown", - "id": "4a68533c", + "id": "10b3af73", "metadata": {}, "source": [ "## Simulation Parameters " @@ -140,7 +140,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "67797ec6", + "id": "2e2b69eb", "metadata": {}, "outputs": [], "source": [ @@ -187,7 +187,7 @@ }, { "cell_type": "markdown", - "id": "bc305fb2", + "id": "ebbab91e", "metadata": {}, "source": [ "The `StreamManagement` class is used to configure the receiver-transmitter association and the number of streams per transmitter.\n", @@ -199,7 +199,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "81c2da6f", + "id": "08378e86", "metadata": {}, "outputs": [], "source": [ @@ -209,7 +209,7 @@ }, { "cell_type": "markdown", - "id": "3cfe80e0", + "id": "feb77719", "metadata": {}, "source": [ "The `ResourceGrid` class is used to configure the OFDM resource grid. It is initialized with the parameters defined above." @@ -218,7 +218,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "927bd37a", + "id": "41b17f86", "metadata": {}, "outputs": [], "source": [ @@ -236,7 +236,7 @@ }, { "cell_type": "markdown", - "id": "f8f4c169", + "id": "6b61e3e9", "metadata": {}, "source": [ "Outer coding is performed such that all the databits carried by the resource grid with size `fft_size`x`num_ofdm_symbols` form a single codeword." @@ -245,7 +245,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "54503cf6", + "id": "b9c1afbd", "metadata": {}, "outputs": [], "source": [ @@ -257,7 +257,7 @@ }, { "cell_type": "markdown", - "id": "44a844b8", + "id": "9a935c71", "metadata": {}, "source": [ "The SIMO link is setup by considering an uplink transmission with one user terminal (UT) equipped with a single non-polarized antenna, and a base station (BS) equipped with an antenna array.\n", @@ -267,7 +267,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "3d3e0917", + "id": "c025cf52", "metadata": {}, "outputs": [], "source": [ @@ -286,7 +286,7 @@ }, { "cell_type": "markdown", - "id": "314f94e8", + "id": "6d33937d", "metadata": {}, "source": [ "## Neural Receiver " @@ -294,7 +294,7 @@ }, { "cell_type": "markdown", - "id": "4e725d65", + "id": "e9651393", "metadata": {}, "source": [ "The next cell defines the Keras layers that implement the neural receiver.\n", @@ -306,7 +306,7 @@ }, { "cell_type": "markdown", - "id": "7b8fe9dd", + "id": "63c331fb", "metadata": {}, "source": [ "![Neural RX]()" @@ -315,7 +315,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "e25eafe2", + "id": "9651cec8", "metadata": {}, "outputs": [], "source": [ @@ -434,7 +434,7 @@ }, { "cell_type": "markdown", - "id": "c5752171", + "id": "5ef365bd", "metadata": {}, "source": [ "## End-to-end System " @@ -442,7 +442,7 @@ }, { "cell_type": "markdown", - "id": "3341554e", + "id": "1cf89203", "metadata": {}, "source": [ "The following cell defines the end-to-end system.\n", @@ -471,7 +471,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "66cc25c0", + "id": "07bc54fd", "metadata": {}, "outputs": [], "source": [ @@ -492,7 +492,7 @@ }, { "cell_type": "markdown", - "id": "7a973a29", + "id": "2ccac0ab", "metadata": {}, "source": [ "The following cell performs one forward step through the end-to-end system:" @@ -501,7 +501,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "16fed277", + "id": "47b41c7b", "metadata": {}, "outputs": [ { @@ -557,7 +557,7 @@ }, { "cell_type": "markdown", - "id": "e6c0d3c7", + "id": "7308c9f5", "metadata": {}, "source": [ "The BMD rate is computed from the LLRs and transmitted bits as follows:" @@ -566,7 +566,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "1c2f9a54", + "id": "752452bc", "metadata": {}, "outputs": [ { @@ -586,7 +586,7 @@ }, { "cell_type": "markdown", - "id": "da4aec23", + "id": "a24c399e", "metadata": {}, "source": [ "The rate is very poor (negative values means 0 bit) as the neural receiver is not trained." @@ -594,7 +594,7 @@ }, { "cell_type": "markdown", - "id": "e1b4dbca", + "id": "d0b7969a", "metadata": {}, "source": [ "## End-to-end System as a Keras Model " @@ -602,7 +602,7 @@ }, { "cell_type": "markdown", - "id": "b43d51ce", + "id": "cafb2661", "metadata": {}, "source": [ "The following Keras *Model* implements the three considered end-to-end systems (perfect CSI baseline, LS estimation baseline, and neural receiver).\n", @@ -622,7 +622,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "636bd5f5", + "id": "f6621847", "metadata": {}, "outputs": [], "source": [ @@ -779,7 +779,7 @@ }, { "cell_type": "markdown", - "id": "37d4eb6e", + "id": "9d3f56d8", "metadata": {}, "source": [ "## Evaluation of the Baselines " @@ -787,7 +787,7 @@ }, { "cell_type": "markdown", - "id": "d15a5429", + "id": "35f3fcb8", "metadata": {}, "source": [ "We evaluate the BERs achieved by the baselines in the next cell.\n", @@ -798,7 +798,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "3913a6b0", + "id": "39bb18d5", "metadata": {}, "outputs": [], "source": [ @@ -811,7 +811,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "0282a311", + "id": "39ba8f2c", "metadata": {}, "outputs": [ { @@ -883,7 +883,7 @@ }, { "cell_type": "markdown", - "id": "7645442f", + "id": "8a0ca3af", "metadata": {}, "source": [ "## Training the Neural Receiver " @@ -891,7 +891,7 @@ }, { "cell_type": "markdown", - "id": "6e386699", + "id": "a4e33757", "metadata": {}, "source": [ "In the next cell, one forward pass is performed within a *gradient tape*, which enables the computation of gradient and therefore the optimization of the neural network through stochastic gradient descent (SGD)." @@ -899,7 +899,7 @@ }, { "cell_type": "markdown", - "id": "566eb6e6", + "id": "44ac3322", "metadata": {}, "source": [ "**Note:** For an introduction to the implementation of differentiable communication systems and their optimization through SGD and backpropagation with Sionna, please refer to [the Part 2 of the Sionna tutorial for Beginners](https://nvlabs.github.io/sionna/examples/Sionna_tutorial_part2.html)." @@ -908,7 +908,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "fa122515", + "id": "4df9fe26", "metadata": {}, "outputs": [], "source": [ @@ -928,7 +928,7 @@ }, { "cell_type": "markdown", - "id": "fbbfc75c", + "id": "fd4da949", "metadata": {}, "source": [ "Next, one can perform one step of stochastic gradient descent (SGD).\n", @@ -938,7 +938,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "9198f766", + "id": "f5bbbea0", "metadata": {}, "outputs": [ { @@ -963,7 +963,7 @@ }, { "cell_type": "markdown", - "id": "76df538c", + "id": "e83c74d5", "metadata": {}, "source": [ "Training consists in looping over SGD steps. The next cell implements a training loop.\n", @@ -976,13 +976,13 @@ "\n", "After training, the weights of the models are saved in a file\n", "\n", - "**Note:** Training can take a while. Therefore, [we have made pre-trained weights available](https://drive.google.com/drive/folders/1h2m_AD-t3qtWYifowChmWEY0DBbIj84Q?usp=sharing). Do not execute the next cell if you don't want to train the model from scratch. " + "**Note:** Training can take a while. Therefore, [we have made pre-trained weights available](https://drive.google.com/file/d/1W9WkWhup6H_vXx0-CojJHJatuPmHJNRF/view?usp=sharing). Do not execute the next cell if you don't want to train the model from scratch. " ] }, { "cell_type": "code", "execution_count": null, - "id": "a6036f91", + "id": "9713f72d", "metadata": {}, "outputs": [], "source": [ @@ -1015,7 +1015,7 @@ }, { "cell_type": "markdown", - "id": "c4412dfe", + "id": "966e5dfc", "metadata": {}, "source": [ "## Evaluation of the Neural Receiver " @@ -1023,7 +1023,7 @@ }, { "cell_type": "markdown", - "id": "06fad7d1", + "id": "114b2d31", "metadata": {}, "source": [ "The next cell evaluates the neural receiver.\n", @@ -1034,7 +1034,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "0908c0e9", + "id": "d07b3699", "metadata": {}, "outputs": [ { @@ -1082,7 +1082,7 @@ }, { "cell_type": "markdown", - "id": "d49e0d40", + "id": "a4ecc17d", "metadata": {}, "source": [ "Finally, we plots the BLERs" @@ -1091,7 +1091,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "d3bfb359", + "id": "48f3b83a", "metadata": {}, "outputs": [ { @@ -1124,7 +1124,7 @@ }, { "cell_type": "markdown", - "id": "8964663e", + "id": "d0dd52db", "metadata": {}, "source": [ "## Pre-computed Results " @@ -1133,7 +1133,7 @@ { "cell_type": "code", "execution_count": null, - "id": "e30b054a", + "id": "5ca9dd96", "metadata": {}, "outputs": [], "source": [ @@ -1143,7 +1143,7 @@ }, { "cell_type": "markdown", - "id": "1c31f43c", + "id": "b2ee96b0", "metadata": {}, "source": [ "## References " @@ -1151,7 +1151,7 @@ }, { "cell_type": "markdown", - "id": "0afb0f56", + "id": "bd33c7e9", "metadata": {}, "source": [ "[1] M. Honkala, D. Korpi and J. M. J. Huttunen, \"DeepRx: Fully Convolutional Deep Learning Receiver,\" in IEEE Transactions on Wireless Communications, vol. 20, no. 6, pp. 3925-3940, June 2021, doi: 10.1109/TWC.2021.3054520.\n", diff --git a/requirements.txt b/requirements.txt index 8c4aa83c..9f1e471a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,5 +1,5 @@ -tensorflow >=2.10.1, !=2.11.0, <2.14.0 ; sys_platform != "darwin" -tensorflow-macos >=2.10, <2.14.0 ; sys_platform == "darwin" +tensorflow >=2.10.1, !=2.11.0, <2.16.0 ; sys_platform != "darwin" +tensorflow-macos >=2.10, <2.16.0 ; sys_platform == "darwin" numpy scipy >=1.6.0 matplotlib diff --git a/setup.cfg b/setup.cfg index 1c7c6387..5ba1f916 100644 --- a/setup.cfg +++ b/setup.cfg @@ -25,8 +25,8 @@ include_package_data = True python_requires = >=3.8 install_requires = - tensorflow >=2.10.1, !=2.11.0, <2.14.0 ; sys_platform != "darwin" - tensorflow-macos >=2.10, <2.14.0 ; sys_platform == "darwin" + tensorflow >=2.10.1, !=2.11.0, <2.16.0 ; sys_platform != "darwin" + tensorflow-macos >=2.10, <2.16.0 ; sys_platform == "darwin" numpy matplotlib scipy >=1.6.0 diff --git a/sionna/__init__.py b/sionna/__init__.py index 5591777e..77d9819c 100644 --- a/sionna/__init__.py +++ b/sionna/__init__.py @@ -5,7 +5,7 @@ """This is the Sionna library. """ -__version__ = '0.16.1' +__version__ = '0.16.2' from . import utils from .constants import * diff --git a/sionna/fec/crc.py b/sionna/fec/crc.py index 344b1278..277b0d4e 100644 --- a/sionna/fec/crc.py +++ b/sionna/fec/crc.py @@ -224,6 +224,11 @@ def call(self, inputs): x_crc = tf.matmul(x_exp32, self._g_mat_crc) # calculate crc bits # take modulo 2 of x_crc (bitwise operations instead of tf.mod) + + # cast to tf.int64 first as TF 2.15 has an XLA bug with casting directly + # to tf.int32 + x_crc = tf.cast(x_crc, dtype=tf.int64) + x_crc = int_mod_2(x_crc) x_crc = tf.cast(x_crc, dtype=self.dtype) diff --git a/sionna/fec/ldpc/decoding.py b/sionna/fec/ldpc/decoding.py index 18318224..411bf666 100644 --- a/sionna/fec/ldpc/decoding.py +++ b/sionna/fec/ldpc/decoding.py @@ -537,29 +537,6 @@ def _vn_update(self, msg, llr_ch): msg.value_rowids()) return x - def _extrinsic_min(self, msg): - """ Provides the extrinsic min operation for the minsum approximation - of the CN function. - - This function implements the extrinsic min operation, i.e., - the min is taken over all values excluding the value at the current - index. - - Note that the input is expected to be a Tensor and NOT a ragged Tensor. - """ - num_val = tf.shape(msg)[0] - msg = tf.transpose(msg, (1,0)) - msg = tf.expand_dims(msg, axis=1) - id_mat = tf.eye(num_val) - - msg = (tf.tile(msg, (1, num_val, 1)) # create outgoing tensor per value - + 1000. * id_mat) # "ignore" intrinsic msg by adding large const. - - - msg = tf.math.reduce_min(msg, axis=2) - msg = tf.transpose(msg, (1,0)) - return msg - def _where_ragged(self, msg): """Helper to replace 0 elements from ragged tensor (called with map_flat_values).""" @@ -709,43 +686,6 @@ def _sign_val_minsum(self, msg): sign_val) return sign_val - def _cn_update_minsum_mapfn(self, msg): - """ Check node update function implementing the min-sum approximation. - - This function approximates the (extrinsic) check node update - function based on the min-sum approximation (cf. [Ryan]_). - It calculates the "extrinsic" min function over all incoming messages - ``msg`` excluding the intrinsic (=outgoing) message itself. - - The input is expected to be a ragged Tensor of shape - `[num_vns, None, batch_size]`. - - This function uses tf.map_fn() to call the CN updates. - It is currently not used, but can be used as template to implement - modified CN functions (e.g., offset-corrected minsum). - Please note that tf.map_fn lowers the throughput significantly. - """ - - sign_val = tf.ragged.map_flat_values(self._sign_val_minsum, msg) - - sign_node = tf.reduce_prod(sign_val, axis=1) - sign_val = self._stop_ragged_gradient(sign_val) * tf.expand_dims( - sign_node, axis=1) - - msg = tf.ragged.map_flat_values(tf.abs, msg) # remove sign - - # calculate extrinsic messages and include the sign - msg_e = tf.map_fn(self._extrinsic_min, msg, infer_shape=False) - - # ensure shape after map_fn - msg_fv = msg_e.flat_values - msg_fv = tf.ensure_shape(msg_fv, msg.flat_values.shape) - msg_e = msg.with_flat_values(msg_fv) - - msg = sign_val * msg_e - - return msg - def _cn_update_minsum(self, msg): """ Check node update function implementing the min-sum approximation. @@ -757,7 +697,8 @@ def _cn_update_minsum(self, msg): The input is expected to be a ragged Tensor of shape `[num_vns, None, batch_size]`. """ - # a constant used overwrite the first min + + # a constant used to overwrite the first min LARGE_VAL = 10000. # pylint: disable=invalid-name # clip values for numerical stability @@ -765,9 +706,8 @@ def _cn_update_minsum(self, msg): clip_value_min=-self._llr_max, clip_value_max=self._llr_max) - # calculate sign of outgoing msg + # calculate sign of outgoing msg and the node sign_val = tf.ragged.map_flat_values(self._sign_val_minsum, msg) - sign_node = tf.reduce_prod(sign_val, axis=1) # TF2.9 does not support XLA for the multiplication of ragged tensors @@ -782,15 +722,16 @@ def _cn_update_minsum(self, msg): sign_node, sign_val.value_rowids()) - msg = tf.ragged.map_flat_values(tf.abs, msg) # remove sign + # remove sign from messages + msg = tf.ragged.map_flat_values(tf.abs, msg) # Calculate the extrinsic minimum per CN, i.e., for each message of # index i, find the smallest and the second smallest value. # However, in some cases the second smallest value may equal the # smallest value (multiplicity of mins). # Please note that this needs to be applied to raggedTensors, e.g., - # tf.top_k() is currently not supported and the ops must support graph - # # mode. + # tf.top_k() is currently not supported and all ops must support graph + # and XLA mode. # find min_value per node min_val = tf.reduce_min(msg, axis=1, keepdims=True) @@ -800,46 +741,52 @@ def _cn_update_minsum(self, msg): # and subtract min; the new array contains zero at the min positions # benefits from broadcasting; all other values are positive - # msg_min1 = msg - min_val msg_min1 = tf.ragged.map_flat_values(lambda x, y, row_ind: - x- tf.gather(y, row_ind), + x - tf.gather(y, row_ind), msg, tf.squeeze(min_val, axis=1), msg.value_rowids()) # replace 0 (=min positions) with large value to ignore it for further # min calculations - msg = tf.ragged.map_flat_values(lambda x: - tf.where(tf.equal(x, 0), LARGE_VAL, x), - msg_min1) + msg = tf.ragged.map_flat_values( + lambda x: tf.where(tf.equal(x, 0), LARGE_VAL, x), + msg_min1) # find the second smallest element (we add min_val as this has been # subtracted before) - min_val2 = tf.reduce_min(msg, axis=1, keepdims=True) + min_val + min_val_2 = tf.reduce_min(msg, axis=1, keepdims=True) + min_val # Detect duplicated minima (i.e., min_val occurs at two incoming # messages). As the LLRs per node are 2*LARGE_VAL, the multiplicity of the min is at least 2. + # If the sum > 2*LARGE_VAL, the multiplicity of the min is at least 2. node_sum = tf.reduce_sum(msg, axis=1, keepdims=True) - (2*LARGE_VAL-1.) # indicator that duplicated min was detected (per node) double_min = 0.5*(1-tf.sign(node_sum)) # if a duplicate min occurred, both edges must have min_val, otherwise # the second smallest value is taken - min_val_e = (1-double_min) * min_val + (double_min) * min_val2 + min_val_e = (1-double_min) * min_val + (double_min) * min_val_2 # replace all values with min_val except the position where the min # occurred (=extrinsic min). - msg_e = tf.where(msg==LARGE_VAL, min_val_e, min_val) + + # no XLA support for TF 2.15 + # msg_e = tf.where(msg==LARGE_VAL, min_val_e, min_val) + + min_1 = tf.squeeze(tf.gather(min_val, msg.value_rowids()), axis=1) + min_e = tf.squeeze(tf.gather(min_val_e, msg.value_rowids()), axis=1) + msg_e = tf.ragged.map_flat_values( + lambda x: tf.where(x==LARGE_VAL, min_e, min_1), + msg) # it seems like tf.where does not set the shape of tf.ragged properly # we need to ensure the shape manually msg_e = tf.ragged.map_flat_values( - lambda x: - tf.ensure_shape(x, msg.flat_values.shape), - msg_e) + lambda x: tf.ensure_shape(x, msg.flat_values.shape), + msg_e) # TF2.9 does not support XLA for the multiplication of ragged tensors # the following code provides a workaround that supports XLA diff --git a/sionna/rt/coverage_map.py b/sionna/rt/coverage_map.py index 5d0af217..0594841f 100644 --- a/sionna/rt/coverage_map.py +++ b/sionna/rt/coverage_map.py @@ -460,7 +460,8 @@ def sample_positions(self, batch_size, tx=0, min_gain_db=None, cm_db < max_gain_db)) # Duplicate indices if requested batch_size > num_idx - reps = tf.math.ceil(tf.cast(batch_size, tf.int32) / idx.shape[0]) + reps = tf.math.ceil(tf.math.divide_no_nan(tf.cast(batch_size, tf.int32), + idx.shape[0])) reps = tf.cast(tf.expand_dims(reps, axis=0), tf.int32) reps = tf.concat((reps, tf.ones_like(tf.cast(idx.shape[1:],tf.int32))), axis=0) diff --git a/sionna/rt/previewer.py b/sionna/rt/previewer.py index 75ab23ad..e391d517 100644 --- a/sionna/rt/previewer.py +++ b/sionna/rt/previewer.py @@ -197,14 +197,20 @@ def plot_scene(self): si.wi = mi.Vector3f(0, 0, 1) # Shapes (e.g. buildings) - vertices, faces, albedos = [None] * n, [None] * n, [None] * n + vertices, faces, albedos = [], [], [] f_offset = 0 for i, s in enumerate(shapes): + null_transmission = s.bsdf().eval_null_transmission(si).numpy() + if np.min(null_transmission) > 0.99: + # The BSDF for this shape was probably set to `null`, do not + # include it in the scene preview. + continue + n_vertices = s.vertex_count() v = s.vertex_position(dr.arange(mi.UInt32, n_vertices)) - vertices[i] = v.numpy() + vertices.append(v.numpy()) f = s.face_indices(dr.arange(mi.UInt32, s.face_count())) - faces[i] = f.numpy() + f_offset + faces.append(f.numpy() + f_offset) f_offset += n_vertices albedo = s.bsdf().eval_diffuse_reflectance(si).numpy() @@ -213,7 +219,7 @@ def plot_scene(self): palette = matplotlib.cm.get_cmap('Pastel1_r') albedo[:] = palette((i % palette.N + 0.5) / palette.N)[:3] - albedos[i] = np.tile(albedo, (n_vertices, 1)) + albedos.append(np.tile(albedo, (n_vertices, 1))) # Plot all objects as a single PyThreeJS mesh, which is must faster # than creating individual mesh objects in large scenes. @@ -284,6 +290,25 @@ def plot_coverage_map(self, coverage_map, tx=0, db_scale=True, self._add_child(mesh, pmin, pmax, persist=False) + def set_clipping_plane(self, offset, orientation): + """ + Input + ----- + clip_at : float + If not `None`, the scene preview will be clipped (cut) by a plane + with normal orientation ``clip_plane_orientation`` and offset + ``clip_at``. This allows visualizing the interior of meshes such + as buildings. + + clip_plane_orientation : tuple[float, float, float] + Normal vector of the clipping plane. + """ + if offset is None: + self._renderer.localClippingEnabled = False + self._renderer.clippingPlanes = [] + else: + self._renderer.localClippingEnabled = True + self._renderer.clippingPlanes = [p3s.Plane(orientation, offset)] @property def camera(self): diff --git a/sionna/rt/scene.py b/sionna/rt/scene.py index 866c6165..ae37831b 100644 --- a/sionna/rt/scene.py +++ b/sionna/rt/scene.py @@ -670,20 +670,20 @@ def compute_paths(self, max_depth=3, method="fibonacci", :class:`~sionna.rt.Paths` object. The path computation consists of two main steps as shown in the below figure. - + .. figure:: ../figures/compute_paths.svg :align: center For a configured :class:`~sionna.rt.Scene`, the function first traces geometric propagation paths using :meth:`~sionna.rt.Scene.trace_paths`. This step is independent of the - :class:`~sionna.rt.RadioMaterial` of the scene objects as well as the transmitters' and receivers' + :class:`~sionna.rt.RadioMaterial` of the scene objects as well as the transmitters' and receivers' antenna :attr:`~sionna.rt.Antenna.patterns` and :attr:`~sionna.rt.Transmitter.orientation`, but depends on the selected propagation phenomena, such as reflection, scattering, and diffraction. The traced paths are then converted to EM fields by the function :meth:`~sionna.rt.Scene.compute_fields`. The resulting :class:`~sionna.rt.Paths` object can be used to compute channel impulse responses via :meth:`~sionna.rt.Paths.cir`. The advantage of separating path tracing - and field computation is that one can study the impact of different radio materials + and field computation is that one can study the impact of different radio materials by executing :meth:`~sionna.rt.Scene.compute_fields` multiple times without re-tracing the propagation paths. This can for example speed-up the calibration of scene parameters by several orders of magnitude. @@ -1066,8 +1066,8 @@ def coverage_map(self, combining_vec : [num_rx_ant], complex | None Combining vector. - If set to `None`, then defaults to - :math:`\frac{1}{\sqrt{\text{num_rx_ant}}} [1,\dots,1]^{\mathsf{T}}`. + If set to `None`, then no combining is applied, and + the energy received by all antennas is summed. precoding_vec : [num_tx_ant], complex | None Precoding vector. @@ -1159,11 +1159,7 @@ def coverage_map(self, cm_size = tf.cast(cm_size, self._rdtype) # Check and initialize the combining and precoding vector - if combining_vec is None: - combining_vec = tf.ones([self.rx_array.num_ant], self._dtype) - combining_vec /= tf.sqrt(tf.cast(self.rx_array.num_ant, - self._dtype)) - else: + if combining_vec is not None: combining_vec = tf.cast(combining_vec, self._dtype) if precoding_vec is None: num_tx = len(self.transmitters) @@ -1201,9 +1197,10 @@ def preview(self, paths=None, show_paths=True, show_devices=True, show_orientations=False, coverage_map=None, cm_tx=0, cm_db_scale=True, cm_vmin=None, cm_vmax=None, - resolution=(655, 500), fov=45, background='#ffffff'): + resolution=(655, 500), fov=45, background='#ffffff', + clip_at=None, clip_plane_orientation=(0, 0, -1)): # pylint: disable=line-too-long - r"""preview(paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_vmin=None, cm_vmax=None, resolution=(655, 500), fov=45, background='#ffffff') + r"""preview(paths=None, show_paths=True, show_devices=True, coverage_map=None, cm_tx=0, cm_vmin=None, cm_vmax=None, resolution=(655, 500), fov=45, background='#ffffff', clip_at=None, clip_plane_orientation=(0, 0, -1)) In an interactive notebook environment, opens an interactive 3D viewer of the scene. @@ -1290,6 +1287,16 @@ def preview(self, paths=None, show_paths=True, show_devices=True, Background color in hex format prefixed by '#'. Defaults to '#ffffff' (white). + clip_at : float + If not `None`, the scene preview will be clipped (cut) by a plane + with normal orientation ``clip_plane_orientation`` and offset ``clip_at``. + That means that everything *behind* the plane becomes invisible. + This allows visualizing the interior of meshes, such as buildings. + Defaults to `None`. + + clip_plane_orientation : tuple[float, float, float] + Normal vector of the clipping plane. + Defaults to (0,0,-1). """ if (self._preview_widget is not None) and (resolution is not None): assert isinstance(resolution, (tuple, list)) and len(resolution) == 2 @@ -1321,6 +1328,9 @@ def preview(self, paths=None, show_paths=True, show_devices=True, coverage_map, tx=cm_tx, db_scale=cm_db_scale, vmin=cm_vmin, vmax=cm_vmax) + # Clipping + fig.set_clipping_plane(offset=clip_at, orientation=clip_plane_orientation) + # Update the camera state if not needs_reset: fig.center_view() diff --git a/sionna/rt/solver_base.py b/sionna/rt/solver_base.py index c3e989f1..19a50d45 100644 --- a/sionna/rt/solver_base.py +++ b/sionna/rt/solver_base.py @@ -86,11 +86,13 @@ def __init__(self, scene, solver=None, dtype=tf.complex64): # Mitsuba types depend on the used precision if dtype == tf.complex64: self._mi_point_t = mi.Point3f + self._mi_point2_t = mi.Point2f self._mi_vec_t = mi.Vector3f self._mi_scalar_t = mi.Float self._mi_tensor_t = mi.TensorXf else: self._mi_point_t = mi.Point3d + self._mi_point2_t = mi.Point2d self._mi_vec_t = mi.Vector3d self._mi_scalar_t = mi.Float64 self._mi_tensor_t = mi.TensorXd diff --git a/sionna/rt/solver_cm.py b/sionna/rt/solver_cm.py index 4bd4f96b..89e83abc 100644 --- a/sionna/rt/solver_cm.py +++ b/sionna/rt/solver_cm.py @@ -100,10 +100,12 @@ class SolverCoverageMap(SolverBase): (in the local X direction) and height (in the local Y direction) in meters of a cell of the coverage map - combining_vec : [num_rx_ant], tf.complex + combining_vec : [num_rx_ant], tf.complex | None Combining vector. This is used to combine the signal from the receive antennas for an imaginary receiver located on the coverage map. + If set to `None`, then no combining is applied, and + the energy received by all antennas is summed. precoding_vec : [num_tx or 1, num_tx_ant], tf.complex Precoding vectors of the transmitters @@ -564,8 +566,10 @@ def _update_coverage_map(self, cm_center, cm_size, cm_cell_size, num_cells, precoding_vec : [num_tx, num_tx_ant] or [1, num_tx_ant], tf.complex Vector used for transmit-precoding - combining_vec : [num_rx_ant], tf.complex - Vector used for receive-combing + combining_vec : [num_rx_ant], tf.complex | None + Vector used for receive-combing. + If set to `None`, then no combining is applied, and + the energy received by all antennas is summed. samples_tx_indices : [num_samples], tf.int Transmitter indices that correspond to evey sample, i.e., from @@ -666,19 +670,25 @@ def _update_coverage_map(self, cm_center, cm_size, cm_cell_size, num_cells, a = self._apply_synthetic_array(tx_rot_mat, rx_rot_mat, k_rx, k_tx, a) - # Apply precoding and combining - # [1, num_rx_ant] - combining_vec = tf.expand_dims(combining_vec, 0) + # Apply precoding # [num_hits, 1, num_tx_ant] precoding_vec = tf.expand_dims(precoding_vec, 1) # [num_hits, num_rx_ant] a = tf.reduce_sum(a*precoding_vec, axis=-1) - # [num_hits] - a = tf.reduce_sum(tf.math.conj(combining_vec)*a, axis=-1) - - # Compute the amplitude of the path - # [num_hits] - a = tf.square(tf.abs(a)) + # Apply combining + # If no combining vector is provided, then sum the energy received by + # the antennas + if combining_vec is None: + # [num_hits] + a = tf.reduce_sum(tf.square(tf.abs(a)), axis=-1) + else: + # [1, num_rx_ant] + combining_vec = tf.expand_dims(combining_vec, 0) + # [num_hits] + a = tf.reduce_sum(tf.math.conj(combining_vec)*a, axis=-1) + # Compute the amplitude of the path + # [num_hits] + a = tf.square(tf.abs(a)) # Add the rays contribution to the coverage map # We just divide by cos(aoa) instead of dividing by the square distance @@ -1603,8 +1613,8 @@ def _shoot_and_bounce(self, combining_vec : [num_rx_ant], tf.complex Combining vector. - This is used to combine the signal from the receive antennas for - an imaginary receiver located on the coverage map. + If set to `None`, then no combining is applied, and + the energy received by all antennas is summed. precoding_vec : [num_tx or 1, num_tx_ant], tf.complex Precoding vectors of the transmitters @@ -1704,9 +1714,11 @@ def _shoot_and_bounce(self, # Direction arranged in a Fibonacci lattice on the unit # sphere. # [num_samples, 3] - k_tx = fibonacci_lattice(samples_per_tx, self._rdtype) - k_tx = tf.tile(k_tx, [num_tx, 1]) - k_tx_dr = self._mi_vec_t(k_tx) + ps = fibonacci_lattice(samples_per_tx, self._rdtype) + ps = tf.tile(ps, [num_tx, 1]) + ps_dr = self._mi_point2_t(ps) + k_tx_dr = mi.warp.square_to_uniform_sphere(ps_dr) + k_tx = mi_to_tf_tensor(k_tx_dr, self._rdtype) # Origin placed on the given transmitters # [num_samples] samples_tx_indices_dr = dr.linspace(self._mi_scalar_t, 0, num_tx-1e-7, @@ -2661,8 +2673,8 @@ def _compute_diffracted_path_power(self, combining_vec : [num_rx_ant], tf.complex Combining vector. - This is used to combine the signal from the receive antennas for - an imaginary receiver located on the coverage map. + If set to `None`, then no combining is applied, and + the energy received by all antennas is summed. precoding_vec : [num_tx or 1, num_tx_ant], tf.complex Precoding vectors of the transmitters @@ -3031,19 +3043,25 @@ def a_m(beta, n): a = self._apply_synthetic_array(tx_rot_mat, rx_rot_mat, -s_hat, s_prime_hat, a) - # Apply spatial precoding and combining + # Apply precoding # Precoding and combing - # [1, 1, num_rx_ant] - combining_vec = insert_dims(combining_vec, 2, 0) # [num_tx/1, 1, 1, num_tx_ant] precoding_vec = insert_dims(precoding_vec, 2, 1) # [num_tx, samples_per_tx, num_rx_ant] a = tf.reduce_sum(a*precoding_vec, axis=-1) - # [num_tx, samples_per_tx] - a = tf.reduce_sum(tf.math.conj(combining_vec)*a, axis=-1) - - # [num_tx, samples_per_tx] - a = tf.square(tf.abs(a)) + # Apply combining + # If no combining vector is set, then the energy of all antennas is + # summed + if combining_vec is None: + # [num_tx, samples_per_tx] + a = tf.reduce_sum(tf.square(tf.abs(a)), axis=-1) + else: + # [1, 1, num_rx_ant] + combining_vec = insert_dims(combining_vec, 2, 0) + # [num_tx, samples_per_tx] + a = tf.reduce_sum(tf.math.conj(combining_vec)*a, axis=-1) + # [num_tx, samples_per_tx] + a = tf.square(tf.abs(a)) # [num_tx, samples_per_tx] cst = tf.square(self._scene.wavelength/(4.*PI)) @@ -3229,8 +3247,8 @@ def _diff_samples_2_coverage_map(self, los_primitives, edge_diffraction, combining_vec : [num_rx_ant], tf.complex Combining vector. - This is used to combine the signal from the receive antennas for - an imaginary receiver located on the coverage map. + If set to `None`, then no combining is applied, and + the energy received by all antennas is summed. precoding_vec : [num_tx or 1, num_tx_ant], tf.complex Precoding vectors of the transmitters diff --git a/sionna/rt/solver_paths.py b/sionna/rt/solver_paths.py index 79101903..7c13a0e2 100644 --- a/sionna/rt/solver_paths.py +++ b/sionna/rt/solver_paths.py @@ -1163,9 +1163,11 @@ def _list_candidates_fibonacci(self, max_depth, sources, num_samples, # sphere. # [samples_per_source, 3] lattice = fibonacci_lattice(samples_per_source, self._rdtype) + sampled_d = tf.tile(lattice, [num_sources, 1]) + sampled_d = self._mi_point2_t(sampled_d) + sampled_d = mi.warp.square_to_uniform_sphere(sampled_d) source_i = dr.linspace(self._mi_scalar_t, 0, num_sources, num=num_samples, endpoint=False) - sampled_d = self._mi_vec_t(tf.tile(lattice, [num_sources, 1])) source_i = mi.Int32(source_i) sources_dr = self._mi_tensor_t(sources) ray = mi.Ray3f( diff --git a/sionna/rt/utils.py b/sionna/rt/utils.py index e3ee7bc8..5ffa45e2 100644 --- a/sionna/rt/utils.py +++ b/sionna/rt/utils.py @@ -573,39 +573,31 @@ def scene_scale(scene): def fibonacci_lattice(num_points, dtype=tf.float32): """ - Generates a Fibonacci lattice for the unit 3D sphere + Generates a Fibonacci lattice for the unit square Input ----- num_points : int Number of points + type : tf.DType + Datatype to use for the output + Output ------- - points : [num_points, 3] + points : [num_points, 2] Generated rectangular coordinates of the lattice points """ - golden_ratio = tf.cast((1.+tf.sqrt(5.))/2., dtype) - - if (num_points%2) == 0: - min_n = -num_points//2 - max_n = num_points//2 - 1 - else: - min_n = -(num_points-1)//2 - max_n = (num_points-1)//2 - - ns = tf.range(min_n, max_n+1, dtype=dtype) + golden_ratio = (1.+tf.sqrt(tf.cast(5., tf.float64)))/2. + ns = tf.range(0, num_points, dtype=tf.float64) - # Spherical coordinate - phis = 2.*PI*ns/golden_ratio - thetas = tf.math.acos(2.*ns/num_points) + x = ns/golden_ratio + x = x - tf.floor(x) + y = ns/(num_points-1) + points = tf.stack([x,y], axis=1) - # Rectangular coordinates - x = tf.sin(thetas)*tf.cos(phis) - y = tf.sin(thetas)*tf.sin(phis) - z = tf.cos(thetas) - points = tf.stack([x,y,z], axis=1) + points = tf.cast(points, dtype) return points diff --git a/test/unit/fec/test_ldpc_decoding.py b/test/unit/fec/test_ldpc_decoding.py index c7a24cfe..056e339b 100644 --- a/test/unit/fec/test_ldpc_decoding.py +++ b/test/unit/fec/test_ldpc_decoding.py @@ -468,6 +468,36 @@ def test_llrmax(self): y = dec(x).numpy() # run 0 iterations print(np.abs(np.max(y)-l)<1e-6) + def test_cn_minsum(self): + """Test min_sim implementation of CN update. + Test that double min is correctly processed, zeros are detected and + that signs are also correctly handled.""" + + # init dummy decoder + pcm, _, _, _ = load_parity_check_examples(0) + dec = LDPCBPDecoder(pcm, cn_type="minsum") + + # test messages for CN function + m_in = tf.ragged.constant(([1,-2,3,-1],[2,.3,2],[0,1,-1,2.3]), + tf.float32) + + # apply decoder + m_out = dec._cn_update_minsum(tf.expand_dims(m_in ,axis=-1)).numpy() + + # reference decoder + m_ref = np.copy(m_in.numpy()) + for i,m in enumerate(m_in.numpy()): + for j in range(len(m)): + x = np.abs(np.copy(m)) + x[j] = 1000 # lareg value + s = np.sign(np.copy(m)) + s[j] = 1 + s = np.prod(s) + m_ref[i][j] = np.min(x) * s + + # and compare both results + for i,(a,b) in enumerate(zip(m_ref, m_out)): + self.assertTrue(np.allclose(a, b[:,0])) class TestBPDecoding5G(unittest.TestCase): """Checks LDPC5GDecoding layer. diff --git a/test/unit/rt/test_coverage_map.py b/test/unit/rt/test_coverage_map.py index de3ee734..3f095201 100644 --- a/test/unit/rt/test_coverage_map.py +++ b/test/unit/rt/test_coverage_map.py @@ -167,7 +167,7 @@ def test_dtype(self): cm_cell_size = np.array([1., 1.]) batch_size = 100 - tx_pos = np.array([0.,0.,0.]) + tx_pos = np.array([1.,1.,2.]) # load simple scene with different dtypes for dt in (tf.complex64, tf.complex128):