-
Notifications
You must be signed in to change notification settings - Fork 312
/
Copy pathdataset.py
54 lines (46 loc) · 1.96 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons Attribution-NonCommercial
# 4.0 International License. To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
import tensorflow as tf
def parse_tfrecord_tf(record):
features = tf.parse_single_example(record, features={
'shape': tf.FixedLenFeature([3], tf.int64),
'data': tf.FixedLenFeature([], tf.string)})
data = tf.decode_raw(features['data'], tf.uint8)
return tf.reshape(data, features['shape'])
# [c,h,w] -> [h,w,c]
def chw_to_hwc(x):
return tf.transpose(x, perm=[1, 2, 0])
# [h,w,c] -> [c,h,w]
def hwc_to_chw(x):
return tf.transpose(x, perm=[2, 0, 1])
def resize_small_image(x):
shape = tf.shape(x)
return tf.cond(
tf.logical_or(
tf.less(shape[2], 256),
tf.less(shape[1], 256)
),
true_fn=lambda: hwc_to_chw(tf.image.resize_images(chw_to_hwc(x), size=[256,256], method=tf.image.ResizeMethod.BICUBIC)),
false_fn=lambda: tf.cast(x, tf.float32)
)
def random_crop_noised_clean(x, add_noise):
cropped = tf.random_crop(resize_small_image(x), size=[3, 256, 256]) / 255.0 - 0.5
return (add_noise(cropped), add_noise(cropped), cropped)
def create_dataset(train_tfrecords, minibatch_size, add_noise):
print ('Setting up dataset source from', train_tfrecords)
buffer_mb = 256
num_threads = 2
dset = tf.data.TFRecordDataset(train_tfrecords, compression_type='', buffer_size=buffer_mb<<20)
dset = dset.repeat()
buf_size = 1000
dset = dset.prefetch(buf_size)
dset = dset.map(parse_tfrecord_tf, num_parallel_calls=num_threads)
dset = dset.shuffle(buffer_size=buf_size)
dset = dset.map(lambda x: random_crop_noised_clean(x, add_noise))
dset = dset.batch(minibatch_size)
it = dset.make_one_shot_iterator()
return it