-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathhumanoid.py
executable file
·369 lines (281 loc) · 15.4 KB
/
humanoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Copyright (c) 2022 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
from envs.dflex_env import DFlexEnv
import math
import torch
import os
import sys
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
import dflex as df
import numpy as np
np.set_printoptions(precision=5, linewidth=256, suppress=True)
try:
from pxr import Usd
except ModuleNotFoundError:
print("No pxr package")
from utils import load_utils as lu
from utils import torch_utils as tu
class HumanoidEnv(DFlexEnv):
def __init__(self, render=False, device='cuda:0', num_envs=4096, seed=0, episode_length=1000, no_grad=True, stochastic_init=False, MM_caching_frequency = 1):
num_obs = 76
num_act = 21
super(HumanoidEnv, self).__init__(num_envs, num_obs, num_act, episode_length, MM_caching_frequency, seed, no_grad, render, device)
self.stochastic_init = stochastic_init
self.init_sim()
# other parameters
self.termination_height = 0.74
self.motor_strengths = [
200,
200,
200,
200,
200,
600,
400,
100,
100,
200,
200,
600,
400,
100,
100,
100,
100,
200,
100,
100,
200]
self.motor_scale = 0.35
self.motor_strengths = tu.to_torch(self.motor_strengths, dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1))
self.action_penalty = -0.002
self.joint_vel_obs_scaling = 0.1
self.termination_tolerance = 0.1
self.height_rew_scale = 10.0
#-----------------------
# set up Usd renderer
if (self.visualize):
self.stage = Usd.Stage.CreateNew("outputs/" + "Humanoid_" + str(self.num_envs) + ".usd")
self.renderer = df.render.UsdRenderer(self.model, self.stage)
self.renderer.draw_points = True
self.renderer.draw_springs = True
self.renderer.draw_shapes = True
self.render_time = 0.0
def init_sim(self):
self.builder = df.sim.ModelBuilder()
self.dt = 1.0/60.0
self.sim_substeps = 48
self.sim_dt = self.dt
self.ground = True
self.num_joint_q = 28
self.num_joint_qd = 27
self.x_unit_tensor = tu.to_torch([1, 0, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1))
self.y_unit_tensor = tu.to_torch([0, 1, 0], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1))
self.z_unit_tensor = tu.to_torch([0, 0, 1], dtype=torch.float, device=self.device, requires_grad=False).repeat((self.num_envs, 1))
self.start_rot = df.quat_from_axis_angle((1.0, 0.0, 0.0), -math.pi*0.5)
self.start_rotation = tu.to_torch(self.start_rot, device=self.device, requires_grad=False)
# initialize some data used later on
# todo - switch to z-up
self.up_vec = self.y_unit_tensor.clone()
self.heading_vec = self.x_unit_tensor.clone()
self.inv_start_rot = tu.quat_conjugate(self.start_rotation).repeat((self.num_envs, 1))
self.basis_vec0 = self.heading_vec.clone()
self.basis_vec1 = self.up_vec.clone()
self.targets = tu.to_torch([200.0, 0.0, 0.0], device=self.device, requires_grad=False).repeat((self.num_envs, 1))
self.start_pos = []
if self.visualize:
self.env_dist = 2.5
else:
self.env_dist = 0. # set to zero for training for numerical consistency
start_height = 1.35
asset_folder = os.path.join(os.path.dirname(__file__), 'assets')
for i in range(self.num_environments):
lu.parse_mjcf(os.path.join(asset_folder, "humanoid.xml"), self.builder,
stiffness=5.0,
damping=0.1,
contact_ke=2.e+4,
contact_kd=5.e+3,
contact_kf=1.e+3,
contact_mu=0.75,
limit_ke=1.e+3,
limit_kd=1.e+1,
armature=0.007,
load_stiffness=True,
load_armature=True)
# base transform
start_pos_z = i*self.env_dist
self.start_pos.append([0.0, start_height, start_pos_z])
self.builder.joint_q[i*self.num_joint_q:i*self.num_joint_q + 3] = self.start_pos[-1]
self.builder.joint_q[i*self.num_joint_q + 3:i*self.num_joint_q + 7] = self.start_rot
num_q = int(len(self.builder.joint_q)/self.num_environments)
num_qd = int(len(self.builder.joint_qd)/self.num_environments)
print(num_q, num_qd)
print("Start joint_q: ", self.builder.joint_q[0:num_q])
self.start_joint_q = self.builder.joint_q[7:num_q].copy()
self.start_joint_target = self.start_joint_q.copy()
self.start_pos = tu.to_torch(self.start_pos, device=self.device)
self.start_joint_q = tu.to_torch(self.start_joint_q, device=self.device)
self.start_joint_target = tu.to_torch(self.start_joint_target, device=self.device)
# finalize model
self.model = self.builder.finalize(self.device)
self.model.ground = self.ground
self.model.gravity = torch.tensor((0.0, -9.81, 0.0), dtype=torch.float32, device=self.device)
self.integrator = df.sim.SemiImplicitIntegrator()
self.state = self.model.state()
num_act = int(len(self.state.joint_act) / self.num_environments) - 6
print('num_act = ', num_act)
if (self.model.ground):
self.model.collide(self.state)
def render(self, mode = 'human'):
if self.visualize:
self.render_time += self.dt
self.renderer.update(self.state, self.render_time)
if (self.num_frames == 1):
try:
self.stage.Save()
except:
print("USD save error")
self.num_frames -= 1
def step(self, actions):
actions = actions.view((self.num_envs, self.num_actions))
# todo - make clip range a parameter
actions = torch.clip(actions, -1., 1.)
##### an ugly fix for simulation nan values #### # reference: https://github.com/pytorch/pytorch/issues/15131
def create_hook():
def hook(grad):
torch.nan_to_num(grad, 0.0, 0.0, 0.0, out = grad)
return hook
if self.state.joint_q.requires_grad:
self.state.joint_q.register_hook(create_hook())
if self.state.joint_qd.requires_grad:
self.state.joint_qd.register_hook(create_hook())
if actions.requires_grad:
actions.register_hook(create_hook())
#################################################
self.actions = actions.clone()
self.state.joint_act.view(self.num_envs, -1)[:, 6:] = actions * self.motor_scale * self.motor_strengths
self.state = self.integrator.forward(self.model, self.state, self.sim_dt, self.sim_substeps, self.MM_caching_frequency)
self.sim_time += self.sim_dt
self.reset_buf = torch.zeros_like(self.reset_buf)
self.progress_buf += 1
self.num_frames += 1
self.calculateObservations()
self.calculateReward()
env_ids = self.reset_buf.nonzero(as_tuple=False).squeeze(-1)
if self.no_grad == False:
self.obs_buf_before_reset = self.obs_buf.clone()
self.extras = {
'obs_before_reset': self.obs_buf_before_reset,
'episode_end': self.termination_buf
}
if len(env_ids) > 0:
self.reset(env_ids)
self.render()
return self.obs_buf, self.rew_buf, self.reset_buf, self.extras
def reset(self, env_ids = None, force_reset = True):
if env_ids is None:
if force_reset == True:
env_ids = torch.arange(self.num_envs, dtype=torch.long, device=self.device)
if env_ids is not None:
# clone the state to avoid gradient error
self.state.joint_q = self.state.joint_q.clone()
self.state.joint_qd = self.state.joint_qd.clone()
# fixed start state
self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.start_pos[env_ids, :].clone()
self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = self.start_rotation.clone()
self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.start_joint_q.clone()
self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.
# randomization
if self.stochastic_init:
self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 0:3] + 0.1 * (torch.rand(size=(len(env_ids), 3), device=self.device) - 0.5) * 2.
angle = (torch.rand(len(env_ids), device = self.device) - 0.5) * np.pi / 12.
axis = torch.nn.functional.normalize(torch.rand((len(env_ids), 3), device = self.device) - 0.5)
self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7] = tu.quat_mul(self.state.joint_q.view(self.num_envs, -1)[env_ids, 3:7], tu.quat_from_angle_axis(angle, axis))
self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] = self.state.joint_q.view(self.num_envs, -1)[env_ids, 7:] + 0.2 * (torch.rand(size=(len(env_ids), self.num_joint_q - 7), device = self.device) - 0.5) * 2.
self.state.joint_qd.view(self.num_envs, -1)[env_ids, :] = 0.5 * (torch.rand(size=(len(env_ids), self.num_joint_qd), device=self.device) - 0.5)
# clear action
self.actions = self.actions.clone()
self.actions[env_ids, :] = torch.zeros((len(env_ids), self.num_actions), device = self.device, dtype = torch.float)
self.progress_buf[env_ids] = 0
self.calculateObservations()
return self.obs_buf
'''
cut off the gradient from the current state to previous states
'''
def clear_grad(self, checkpoint = None):
with torch.no_grad():
if checkpoint is None:
checkpoint = {}
checkpoint['joint_q'] = self.state.joint_q.clone()
checkpoint['joint_qd'] = self.state.joint_qd.clone()
checkpoint['actions'] = self.actions.clone()
checkpoint['progress_buf'] = self.progress_buf.clone()
current_joint_q = checkpoint['joint_q'].clone()
current_joint_qd = checkpoint['joint_qd'].clone()
self.state = self.model.state()
self.state.joint_q = current_joint_q
self.state.joint_qd = current_joint_qd
self.actions = checkpoint['actions'].clone()
self.progress_buf = checkpoint['progress_buf'].clone()
'''
This function starts collecting a new trajectory from the current states but cuts off the computation graph to the previous states.
It has to be called every time the algorithm starts an episode and it returns the observation vectors
'''
def initialize_trajectory(self):
self.clear_grad()
self.calculateObservations()
return self.obs_buf
def get_checkpoint(self):
checkpoint = {}
checkpoint['joint_q'] = self.state.joint_q.clone()
checkpoint['joint_qd'] = self.state.joint_qd.clone()
checkpoint['actions'] = self.actions.clone()
checkpoint['progress_buf'] = self.progress_buf.clone()
return checkpoint
def calculateObservations(self):
torso_pos = self.state.joint_q.view(self.num_envs, -1)[:, 0:3]
torso_rot = self.state.joint_q.view(self.num_envs, -1)[:, 3:7]
lin_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 3:6]
ang_vel = self.state.joint_qd.view(self.num_envs, -1)[:, 0:3]
# convert the linear velocity of the torso from twist representation to the velocity of the center of mass in world frame
lin_vel = lin_vel - torch.cross(torso_pos, ang_vel, dim = -1)
to_target = self.targets + self.start_pos - torso_pos
to_target[:, 1] = 0.0
target_dirs = tu.normalize(to_target)
torso_quat = tu.quat_mul(torso_rot, self.inv_start_rot)
up_vec = tu.quat_rotate(torso_quat, self.basis_vec1)
heading_vec = tu.quat_rotate(torso_quat, self.basis_vec0)
self.obs_buf = torch.cat([torso_pos[:, 1:2], # 0
torso_rot, # 1:5
lin_vel, # 5:8
ang_vel, # 8:11
self.state.joint_q.view(self.num_envs, -1)[:, 7:], # 11:32
self.joint_vel_obs_scaling * self.state.joint_qd.view(self.num_envs, -1)[:, 6:], # 32:53
up_vec[:, 1:2], # 53:54
(heading_vec * target_dirs).sum(dim = -1).unsqueeze(-1), # 54:55
self.actions.clone()], # 55:76
dim = -1)
def calculateReward(self):
up_reward = 0.1 * self.obs_buf[:, 53]
heading_reward = self.obs_buf[:, 54]
height_diff = self.obs_buf[:, 0] - (self.termination_height + self.termination_tolerance)
height_reward = torch.clip(height_diff, -1.0, self.termination_tolerance)
height_reward = torch.where(height_reward < 0.0, -200.0 * height_reward * height_reward, height_reward)
height_reward = torch.where(height_reward > 0.0, self.height_rew_scale * height_reward, height_reward)
progress_reward = self.obs_buf[:, 5]
self.rew_buf = progress_reward + up_reward + heading_reward + height_reward + torch.sum(self.actions ** 2, dim = -1) * self.action_penalty
# reset agents
self.reset_buf = torch.where(self.obs_buf[:, 0] < self.termination_height, torch.ones_like(self.reset_buf), self.reset_buf)
self.reset_buf = torch.where(self.progress_buf > self.episode_length - 1, torch.ones_like(self.reset_buf), self.reset_buf)
# an ugly fix for simulation nan values
nan_masks = torch.logical_or(torch.isnan(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isnan(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isnan(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0))
inf_masks = torch.logical_or(torch.isinf(self.obs_buf).sum(-1) > 0, torch.logical_or(torch.isinf(self.state.joint_q.view(self.num_environments, -1)).sum(-1) > 0, torch.isinf(self.state.joint_qd.view(self.num_environments, -1)).sum(-1) > 0))
invalid_value_masks = torch.logical_or((torch.abs(self.state.joint_q.view(self.num_environments, -1)) > 1e6).sum(-1) > 0,
(torch.abs(self.state.joint_qd.view(self.num_environments, -1)) > 1e6).sum(-1) > 0)
invalid_masks = torch.logical_or(invalid_value_masks, torch.logical_or(nan_masks, inf_masks))
self.reset_buf = torch.where(invalid_masks, torch.ones_like(self.reset_buf), self.reset_buf)
self.rew_buf[invalid_masks] = 0.