-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisulized.py
48 lines (36 loc) · 1.35 KB
/
visulized.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import nibabel as nib
import monai
import matplotlib.pyplot as plt
import torch
image = nib.load("/data/onkar/NeurIPS_Liver_unlabelled/training_t2/images/67.nii.gz").get_fdata()
label = nib.load("/data/onkar/NeurIPS_Liver_unlabelled/training_t2/labels/67.nii.gz").get_fdata()
print(image.shape, label.shape)
image = torch.tensor(image).unsqueeze(0)
image = monai.transforms.spatial.functional.resize(
image,
out_size=(320, 320, 32),
mode="nearest",
align_corners=None,
dtype=None,
input_ndim=3,
anti_aliasing=False,
anti_aliasing_sigma=None,
lazy=False,
transform_info=None
).squeeze(0).numpy()
label = torch.tensor(label).unsqueeze(0)
label = monai.transforms.spatial.functional.resize(
label,
out_size=(320, 320, 32),
mode="nearest",
align_corners=None,
dtype=None,
input_ndim=3,
anti_aliasing=False,
anti_aliasing_sigma=None,
lazy=False,
transform_info=None
).squeeze(0).numpy()
for i in range(image.shape[-1]):
plt.imsave(f"/home/awd8324/onkar/TransUnet3D/img/{i}.png", image[:,:,i], cmap='gray')
plt.imsave(f"/home/awd8324/onkar/TransUnet3D/lab/{i}.png", label[:,:,i], cmap='gray')