-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrad_cam.py
52 lines (36 loc) · 1.26 KB
/
grad_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from torch.utils.data import DataLoader, Dataset
import torch
from model.trans_3DUnet import get_model_dict
from train import pancreas
from medcam import medcam
from synergynet import SynVNet_8h2s
import monai
device = torch.device("cuda:3" if torch.cuda.is_available() else "cpu")
# model_fn = get_model_dict("MaskTransUnet")
# model = model_fn(
# num_layers=[16, 64, 64, 128],
# roi_size_list=[40, 30, 20, 20],
# is_roi_list=[False, True, False, True],
# dim_input=1,
# dim_output=1,
# kernel_size=3
# )
model = monai.networks.nets.SwinUNETR(
img_size=(256, 256, 64),
in_channels=1,
out_channels=1
)
train_ds = pancreas("/data/onkar/NeurIPS_Liver_unlabelled/training_t1")
train_dataloader = DataLoader(train_ds, batch_size=1, shuffle=True, num_workers=1)
# net = torch.load("/data/onkar/NeurIPS_Liver_unlabelled/training_t1/neurips_models/1.pth")
# model.load_state_dict(net['model'])
model.to(device)
print(model)
model = medcam.inject(model, output_dir="attention_maps", save_maps=True, backend="gcam")
model.eval()
for i, data in enumerate(train_dataloader):
x = data[0].to(device)
out = model(x)
# out = out.detach().cpu().numpy()[0,0]
print(out.shape)
break