-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathinference_segmentation.py
135 lines (116 loc) · 7.07 KB
/
inference_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import csv
import rasterio
from tqdm import tqdm
from shutil import move
from pathlib import Path
from numbers import Number
from tempfile import mkstemp
from omegaconf import DictConfig
from typing import Dict, Sequence, Union
from utils.aoiutils import aois_from_csv
from dataset.stacitem import SingleBandItemEO
from utils.logger import get_logger, set_tracker
from geo_inference.geo_inference import GeoInference
from utils.utils import get_device_ids, get_key_def, set_device
# Set the logging file
logging = get_logger(__name__)
def stac_input_to_temp_csv(input_stac_item: Union[str, Path]) -> Path:
"""Saves a stac item path or url to a temporary csv"""
_, stac_temp_csv = mkstemp(suffix=".csv")
with open(stac_temp_csv, "w", newline="") as fh:
csv.writer(fh).writerow([str(input_stac_item), None, "inference", Path(input_stac_item).stem])
return Path(stac_temp_csv)
def main(params:Union[DictConfig, Dict]):
working_folder = get_key_def('root_dir', params['inference'], default="inference", to_path=True)
working_folder.mkdir(exist_ok=True)
model_path = get_key_def('model_path',
params['inference'],
to_path=True,
validate_path_exists=True,
wildcard='*pt')
prep_data_only = get_key_def('prep_data_only', params['inference'], default=False, expected_type=bool)
# Set the device
num_devices = get_key_def('gpu', params['inference'], default=0, expected_type=(int, bool))
if num_devices > 1:
logging.warning(f"Inference is not yet implemented for multi-gpu use. Will request only 1 GPU.")
num_devices = 1
max_used_ram = get_key_def('max_used_ram', params['inference'], default=25, expected_type=int)
if not (0 <= max_used_ram <= 100):
raise ValueError(f'\nMax used ram parameter should be a percentage. Got {max_used_ram}.')
max_used_perc = get_key_def('max_used_perc', params['inference'], default=25, expected_type=int)
gpu_devices_dict = get_device_ids(num_devices, max_used_ram_perc=max_used_ram, max_used_perc=max_used_perc)
patch_size = get_key_def('patch_size', params['inference'], default=1024, expected_type=int)
workers = get_key_def('workers', params['inference'], default=0, expected_type=int)
prediction_threshold = get_key_def('prediction_threshold', params['inference'], default=0.3, expected_type=float)
device = set_device(gpu_devices_dict=gpu_devices_dict)
# Dataset params
bands_requested = get_key_def('bands', params['dataset'], default=[1, 2, 3], expected_type=Sequence)
classes_dict = get_key_def('classes_dict', params['dataset'], expected_type=DictConfig)
download_data = get_key_def('download_data', params['inference'], default=False, expected_type=bool)
data_dir = get_key_def('raw_data_dir', params['dataset'], default="data", to_path=True, validate_path_exists=True)
clahe_clip_limit = get_key_def('clahe_clip_limit', params['tiling'], expected_type=Number, default=0)
raw_data_csv = get_key_def('raw_data_csv', params['inference'], expected_type=str, to_path=True,
validate_path_exists=True)
input_stac_item = get_key_def('input_stac_item', params['inference'], expected_type=str, to_path=True,
validate_path_exists=True)
num_classes = get_key_def('num_classes', params['inference'], expected_type=int, default=5)
vectorize = get_key_def('ras2vec', params['inference'], expected_type=bool, default=False)
transform_flip = get_key_def('flip', params['inference'], expected_type=bool, default=False)
transform_rotate = get_key_def('rotate', params['inference'], expected_type=bool, default=False)
transforms = True if transform_flip or transform_rotate else False
if raw_data_csv and input_stac_item:
raise ValueError(f"Input imagery should be either a csv of stac item. Got inputs from both \"raw_data_csv\" "
f"and \"input stac item\"")
if input_stac_item:
raw_data_csv = stac_input_to_temp_csv(input_stac_item)
if not all([SingleBandItemEO.is_valid_cname(band) for band in bands_requested]):
logging.warning(f"Requested bands are not valid stac item common names. Got: {bands_requested}")
bands_requested = [SingleBandItemEO.band_to_cname(band) for band in bands_requested]
logging.warning(f"Will request: {bands_requested}")
# LOGGING PARAMETERS
exper_name = get_key_def('project_name', params['general'], default='gdl-training')
run_name = get_key_def(['tracker', 'run_name'], params, default='gdl')
tracker_uri = get_key_def(['tracker', 'uri'], params, default=None, expected_type=str, to_path=False)
set_tracker(mode='inference', type='mlflow', task='segmentation', experiment_name=exper_name, run_name=run_name,
tracker_uri=tracker_uri, params=params, keys2log=['general', 'dataset', 'model', 'inference'])
# GET LIST OF INPUT IMAGES FOR INFERENCE
list_aois = aois_from_csv(
csv_path=raw_data_csv,
bands_requested=bands_requested,
download_data=download_data,
data_dir=data_dir,
equalize_clahe_clip_limit=clahe_clip_limit,
)
if prep_data_only:
logging.info(f"[prep_data_only mode] Data preparation for inference is complete. Exiting...")
exit()
# Create the inference object
device_str = "gpu" if device.type == 'cuda' else "cpu"
gpu_index = device.index if device.type == 'cuda' else 0
geo_inference = GeoInference(model=str(model_path),
work_dir=str(working_folder),
mask_to_vec=vectorize,
device=device_str,
gpu_id=gpu_index,
num_classes=num_classes,
prediction_threshold=prediction_threshold,
transformers=transforms,
transformer_flip=transform_flip,
transformer_rotate=transform_rotate,
)
# LOOP THROUGH LIST OF INPUT IMAGES
for aoi in tqdm(list_aois, desc='Inferring from images', position=0, leave=True):
logging.info(f'\nReading image: {aoi.aoi_id}')
input_path = str(aoi.raster.name)
mask_name = geo_inference(input_path, patch_size=patch_size, workers=workers)
mask_path = working_folder / mask_name
# update metadata info and rename mask tif.
if classes_dict is not None:
meta_data_dict = {"checkpoint": str(model_path),
"classes_dict": classes_dict}
with rasterio.open(mask_path, 'r+') as raster:
raster.update_tags(**meta_data_dict)
output_path = get_key_def('output_path', params['inference'], expected_type=str, to_path=True,
default=mask_path)
move(mask_path, output_path)
logging.info(f"finished inferring image: {aoi.aoi_id} ")